簡易檢索 / 詳目顯示

研究生: 陳皇宇
Chen, Huang-Yu
論文名稱: 多維密度函數偏導數平方積分之 極優估計及其應用
Root n estimates of integrated squared density partial derivatives and applications
指導教授: 吳鐵肩
Wu, Tiee-Jian
學位類別: 博士
Doctor
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 59
中文關鍵詞: 特徵函數收斂速度多維度核密度估計交叉確認法無母數訊息下界
外文關鍵詞: Characteristic function, nonparametric information bound, cross-validation, multivariate kernel estimate, convergence rate
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文考慮 $d$ 維度密度函數偏導數積分平方之估計問題。我們提出以樣本特徵函數為基礎的估計量。樣本特徵函數的高頻 (high-frequency) 區受樣本變異的影響,並沒有包含很多 $f$ 的訊息。藉由廣義交叉確認法 (generalization of cross-validation) 選取截斷頻率,捨去此截斷頻率 (cut-off frequency) 之後的樣本特徵函數以降低估計量的變異數。對於任意維度 $d$ 及 $f$
    具有某些平滑特性的情況下,本文證明了估計 $d$
    維度密度函數偏導數積分平方之訊息界限 (information bound) 。除此之外,對於 $f$ 及核函數滿足某些平滑的條件之下,提出的估計量具有漸近常態 (asymptotically normal)、 $sqrt{n}$ 的收斂速度和變異數達到訊息下界等大樣本性質。在本論文中,模擬研究呈現此估計量在有限的樣本數下的良好表現。最後,我們也考慮此估計量的應用問題。

    Based on a random sample of size $n$ from an unknown $d$-dimensional density $f$, the nonparametric estimation of integrated squared density partial derivatives is considered.
    These functionals are important in a number of contexts. The proposed estimator is constructed in the frequency domain by using the sample characteristic function. It is known that the sample characteristic function at high frequency is dominated by sample variation and does not contain much information about $f$. Hence, the variation of the estimator can be reduced by modifying the
    sample characteristic function beyond some cut-off frequency. It is proposed to select adaptively the cut-off frequency by a generalization of cross-validation. For every $d$ and sufficiently
    smooth $f$, the information bounds of estimating integrated squared density partial derivatives are established. Furthermore, for sufficiently smooth $f$ and kernel function, it is shown that the
    proposed estimator is asymptotically normal, attains the optimal $sqrt{n}$ convergence rate and achieves the information bound. In simulation studies the superior performance of the proposed
    procedures is clearly demonstrated. Finally, an application based on the plug-in method of bandwidth selection in kernel estimation of
    $f$ is also considered.

    1 Introduction ---------------------------------------------------------------- 1 1.1 Background ------------------------------------------------------------ 1 1.2 The kernel method ----------------------------------------------------- 2 1.3 Error criteria -------------------------------------------------------- 3 1.4 Cross-validation and plug-in method ----------------------------------- 4 1.4.1 Least-squared cross-validation ---------------------------------- 4 1.4.2 Plug-in method -------------------------------------------------- 5 1.5 The problem ----------------------------------------------------------- 6 2 Literature ------------------------------------------------------------------ 7 2.1 In univariate cases --------------------------------------------------- 7 2.2 In multivariate cases -------------------------------------------------10 3 Estimator -------------------------------------------------------------------12 3.1 The proposed estimator ------------------------------------------------12 3.2 Main theoretical results ----------------------------------------------15 3.3 The modification of the proposed estimator ----------------------------17 3.4 Simulation results for integrated squared density partial derivatives -19 4 Application -----------------------------------------------------------------22 4.1 The rate of convergence -----------------------------------------------22 4.2 Simulation results for plug in bandwidth selector ---------------------23 5 Conclusion ------------------------------------------------------------------25 6 Appendix: proof -------------------------------------------------------------26 Bibliography ------------------------------------------------------------------40 Tables ------------------------------------------------------------------------43

    Bickel, P.J. and Ritov, Y. (1988). Estimating integrated squared
    density derivatives: sharp best order of convergence estimates.
    Sankhya Ser. A, 50, 381-393.

    Bowman, A. (1984). An alternative method of cross-validation for the
    smoothing of density estimates. Biometrika, 71, 353-360.

    Brillinger, D. R. (1981). Time Series Data Analysis and Theory.
    Holt, Rinehart and Windston, New York.

    Cheng, M.Y. (1997). Boundary aware estimators of integrated density
    derivative products. J. Roy. Statist. Soc. B, 59, 191-203.

    Chiu, S.T. (1991a). Bandwidth selection for kernel density
    estimation. Ann. Statist., 19, 1833-1905.

    Chiu, S.T. (1991b). The effect of discretization error on bandwidth
    selection for kernel density estimation. Biometrika, 78, 436-441.

    Chiu, S.T. (1992). An automatic bandwidth selector for kernel
    density estimation. Biometrika, 79, 771-782.

    Davis, K.B. (1975). Mean square error properties of density
    estimates. Ann. statist., 3, 1025-1030.

    Davis, K.B. (1977). Mean integrated square error properties of
    density estimates. Ann. statist., 5, 530-535.

    Fan, J. (1991). On the estimation of quadratic functionals. Ann. statist., 19, 1273-1294.

    Fan, J. and Marron, J.S. (1992). Best possible constant for
    bandwidth selection. Ann. statist., 20, 2057-2070.

    Hall, P. and Marron, J.S. (1987). Estimation of integrated squared
    density derivatives. Statist. Probab. Lett., 6, 109-115.

    Hall, P. and Marron, J.S. (1988). Choice of kernel order in
    density estimation. Ann. statist., 16, 161-173.

    Hewitt, E. and Stromberg, K. (1969). Real and Abstract Analysis.
    Springer, New York.

    Ibragimov, I.A. and Khas'minskii, R.Z. (1982). Estimation of
    distribution density belonging to a class of entire functions. Theory Probab. Appl., 27, 551-562.

    Jones, M.C. and Sheather, S.J. (1991). Using non-stochastic terms to
    advantage in kernel-based estimation of integrated squared density
    derivativs. Statist. Probab. Lett., 11, 511-514.

    Laurant, B. (1996). Efficient estimation of integrated functionals
    of a density. Ann. statist., 24, 659-681.

    Martinez, H.V. and Olivares, M.M. (1999). Estimation of quadratic
    functionals of a density. Statist. Probab. Lett., 42, 327-332.

    Nadaraya, E.A. (1974). On the integral mean square error of some
    nonparametric estimates for the density function. Theory Probab. Appl., 19, 133-141.

    Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a
    density function. Ann. Math. Statist., 27, 832-837.

    Rudemo, M. (1982). Empirical choice of histograms and kernel density
    estimators. Scand. J. Statist., 9, 65-78.

    Scott, D.W. (1992). Multivariate Density Estimation: Theory,
    Practice, and Visualization. John Wiley, New York.

    Sheather, S.J. and Jones, M.C. (1991). A reliable data-based
    bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. B, 53, 683-690.

    Silverman, B.W. (1986). Density Estimation for Statistics and Data
    Analysis. Chapman and Hall, London.

    Wand, M.P. and Jones, M.C. (1993). Comparison of smoothing
    parameterizations in bivariate kernel density estimation. J. Amer. Statist. Assoc., 88, 520-528.

    Wand, M.P. and Jones, M.C. (1994). Multivariate plug-in bandwidth
    selection. Comput. Statist., 9, 97-166.

    Woodroofe, M. (1970). On choosing a delta-sequence. Ann. Math. Statist., 41, 1665-1671.

    Wu, T.J. (1995). Adaptive root n estimates of integrated squared
    density derivatives. Ann. statist., 23, 1474-1495.

    Wu, T.J. (1997). Root n bandwidth selectors for kernel estimation of
    density derivatives. J. Amer. Statist. Assoc., 92, 536-547.

    Wu, T.J. and Tsai, M.H. (2004). Root n bandwidth selectors in
    multivariate kernel density estimation. Probab. Theor. Rel. Fields, 129, 537-558.

    下載圖示 校內:2008-10-12公開
    校外:2008-10-12公開
    QR CODE