| 研究生: |
陳昱仁 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
銅與環氧樹脂封膠界面受循環負載下之疲勞裂紋成長 Fatigue Crack Growth on the Interface of Copper and Epoxy Molding Compound under Cyclic Loading |
| 指導教授: |
屈子正
Chiu, Tz-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 界面 、脫層 、混合模式 、應變能釋放率 、銅 、環氧樹脂封膠 |
| 外文關鍵詞: | mixed-mode bending, delamination, double cantilever beam, subcritical growth, strain energy release rate |
| 相關次數: | 點閱:186 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前電子封裝產業為提高電子元件中積體電路的密度,採用多層互連的結構,相異材料界面因熱膨脹係數不匹配的現象成為關鍵失效的原因之一,其中銅與環氧樹脂封膠為現今電子元件中常見的相異材料界面之一,由於金屬與高分子材料間無法產生強勁的金屬鍵和共價鍵,故此類界面的脫層經常是造成失效原因,彰顯出此種界面可靠度的重要性,故本研究開發出的量測系統將以銅與環氧樹脂封膠為目標界面,建立其疲勞裂紋成長模型。
由於現今對於材料界面的混合模式下疲勞裂紋成長特性資料匱乏,為了預測相異界面及相關結構的可靠度,本研究發展一套量測材料受混合模式固定相位角下的疲勞成長特性的儀器,透過NI CompactRIO平台搭配其運動控制模組,控制兩顆音圈馬達對混合模式彎曲樑施加不相等的作用力以構成混合模式彎曲,實驗透過量測試件開口量與作用力得到當次循環的柔量值(compliance),運用彈性基底樑理論以柔量值計算其相對應的裂紋長度,並透過解析解得到應變能釋放率,再由程式回饋計算下一周次的施力大小,以確保相位角不變,由此得到銅與環氧樹脂封膠界面受疲勞負載下,疲勞特性常數n隨著相位角提高而下降,透過此實驗所得到的疲勞特性常數配合電子元件中界面缺陷成長模擬,可評估元件可靠性,減少研發所需的成本與時間。
The fatigue growth of a crack on the interface of Cu and epoxy molding compound (EMC) was investigated by using a mixed-mode bending test setup. In this setup, the mixed-mode loading is achieved by using two voice coil motors for applying unequal end-loads on a double cantilever beam (DCB) specimen. The specimen consists of two oxygen-free Cu strips bonded by using EMC. By using an analytical formula based on the beam-on-elastic-foundation theory and compliance method, the crack length and the strain energy release rate are calculated from the DCB opening displacement and the applied end forces. A real-time OS controller CompactRIO is used for the system control and data analysis. The control program calculates the crack length and phase angle for adjusting the applied force to maintain the prescribed mode mixity throughout the fatigue experiment. By post-processing the experiment results, the subcritical fatigue growth responses of the Cu-EMC interface were obtained. It was found that the steady-state cyclic fatigue delamination growth rate displays a power-law dependence on the applied strain energy release rate range. The measured fatigue growth characteristics may be further incorporate with the fracture mechanics analysis to predict the delamination growth on the interface of interest in a realistic structure.
[1]X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 18, pp. 150-153, 1995.
[2]J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers,” International Journal of Solids and Structures, vol. 33, pp. 65-78, 1996.
[3]M. W. Lane, R. H. Dauskardt, Q. Ma, H. Fujimoto and N. Krishna, “Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects,” MRS proceedings, vol. 563, pp. 251-256, 1999.
[4]S. Benayoun, L. Fouilland-Paille and J. J. Hantzpergue, “Microscratch test studies of thin silica films on stainless steel substrates,” Thin Solid Films, vol. 352, pp. 56-166, 1999.
[5]W. K. Szeto, M. Y. Xie, J. K. Kim, M. M. F. Yuen, P. Tong and S. Yi, “Interface failure criterion of button shear test as a means of interface adhesion measurement in plastic packages,” Electronic Materials and Packaging, 2000. (EMAP 2000). International Symposium on, 2000, pp. 263-268.
[6]J. Yang and O. Paul, “Fracture properties of LPCVD silicon nitride thin films from the load deflection of long membranes,” Sensors and Actuators A: Physical, vol. 139, pp. 330-336, 2002.
[7]James R. Reeder and John R. Crews Jr, “Mixed-mode bending method for delamination Testing,” AIAA Journal vol. 28, pp. 1270-1276, 1990.
[8]G. Fernlund, J. Spelt, “Mixed-mode fracture characterization of adhesive joints,” Composites Science and Technology, vol. 50, pp. 441-449, 1994.
[9]F. Ducept, P. Davies and D. Gamby, “An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites,” Composites: Part A, vol. 28A, pp. 719-729, 1997.
[10]F. Ducept, P. Davies and D. Gamby, “Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint,” International Journal of Adhesion & Adhesives, vol. 20, pp. 233-244, 2000.
[11]X. S. Dai, M. V. Brillhart and P. S. Ho, “Adhesion measurement for electronic packaging applications using double cantilever beam method,” Components and Packaging Technologies, IEEE Transactions on, vol. 23, pp. 101-116, 2000.
[12]H. Miyagawa, C. Sato and K. Ikegami, “Fracture toughness evaluation for multidirectional CFRP by the Raman coating method,” Composites Science and Technology, vol. 60, pp. 903-2915, 2000.
[13]M. Kolluri, M. H. L. Thissen, J. P. M. Hoefnagels, J. A. W. van Dommelen and M. G. D. Geers, “In-situ characterization of interface delamination by a new miniature mixed mode bending setup,” International Journal of Fracture, vol. 158, pp. 183-195, 2009.
[14]M. Kolluri, J.P.M Hoefnagels, J.A.W van Dommelen and M.G.D. Geers, “An improved miniature mixed-mode delamination setup for in situ microscopic interface failure analyses,” Journal of Physics D: Applied Physics, vol. 44, pp. -34, 2011.
[15]K. Hu, “Influence of Patterned Cu Roughness on Cu-EMC Interface Adhesion Properties,” Internship report, Philips Research, Eindhoven, Nov. 2011.
[16]M. Costa, R. Carbas, E. Marques, G. Viana, L.F.M. da Silva. “An apparatus for mixed-mode fracture characterization of adhesive joints,” Theoretical and Applied Fracture Mechanics (2017), http://dx.doi.org/10.1016/j.tafmec.2017.04.014.
[17]J. Guzek, H. Azimi and S. Suresh, “Fatigue crack propagation along polymer-metal interface in microelectronic packages,” IEEE Transactions on Components and Packaging Technology, vol. 20, pp. 496-504, 1997.
[18]S. Y. Kook, J. M. Snodgrass, A. Kirtikar and R. H. Dauskardt, “Adhesion and reliability of polymer inorganic interfaces,” Journal of Electronic Packaging, vol.120, pp. 328-335, 1998.
[19]J.K. Kim and C.S. Kim, “Fatigue crack growth behavior of rail steel under mode I and mixed mode loadings,” Material Science and Engineering, vol. A338, pp. 191-201, 2002.
[20]W. Xie and S. K. Sitaraman, “Investigation of Interface Delamination of a Copper-Epoxy Interface Under Monotonic and Cyclic Loading: Expermental Characterization,” IEEE Transactions on Advanced Packaging, vol. 26, no. 4, 2003
[21]A. Pirondi and G. Nicoletto, “Fatigue crack growth in bonded DCB specimens,” Engineering Fracture Mechanics, vol. 71, pp. 859-871, 2004.
[22]J. Zhang, L. Peng, L. Zhao, B. Fei. “Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading. International Journal of Fatigue,” vol. 40 pp. 7-15, 2012.
[23]郭献駿,材料界面受混合模式作用下疲勞裂紋成長特性量測系統之建立,碩士論文,機械工程學系,國立成功大學,2014。
[24]呂威,鋁-環氧樹脂界面裂紋受混合模式負載之疲勞裂紋成長,碩士論文,機械工程學系,國立成功大學,2016。
[25]National Instrument, LabVIEW Real-Time Course Manual, 2012
[26]A. A. Griffith, “The phenomena of rupture and flow in solids.,” Philosophical Transaction, vol. 221, pp. 163-198, 1920.
[27]G. R. Irwin and J. A. Kies, “Critical Energy Rate Analysis of Fracture Strength,” Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954.
[28]M. F. Kanninen, “An argumentted double beam model for studying crack propagation and arrest,” international Journal of Fracture, vol. 9, pp. 83-92, 1973.
[29]王建智,含邊緣裂紋樑受混合模式彎矩之破壞力學分析,國立成功大學,碩士論文,2012。
[30]P. C. Paris and F. Erdogan, “A critical analysis od crack propagation laws,” Journal of Basic Engineering, vol. 85, pp. 528-534, 1963.
[31]朱書偉,聚醯亞胺與氮化矽薄膜界面之疲勞裂紋成長行為,國立成功大學,碩士論文,2010。
[32]National Instrument, LabVIEW FPGA Course Manual, 2012
[33]National Instrument, Labview Core2 Course Manual, 2014
[34]F. E. Penado, “A Closed Form solution for the energy release rate of the double cantilever beam specimen with an adhesive layer ” Journal of Composite Materials, vol. 27, pp. 383-407, 1993.