| 研究生: |
余立偉 Yu, Li-Wei |
|---|---|
| 論文名稱: |
1/2縮尺非韌性鋼筋混凝土建築受近斷層地震之振動台實驗與分析 Shaking Table Test of 1/2-Scale Non-Ductile RC Buildings subjected to Near Fault Earthquakes |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 共同指導教授: |
蕭輔沛
Hsiao, Fu-Pei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 近斷層地震 、非韌性結構 、非線性動力歷時分析 |
| 外文關鍵詞: | near-fault, non-ductile, nonlinear dynamic analysis |
| 相關次數: | 點閱:95 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1999 年集集地震、2016 美濃地震與2018 年花蓮地震災害經驗顯示,建築結構系統中常存有軟弱底層、力量傳遞路徑不良、非韌性配筋等問題,造成嚴重破壞甚至倒塌。尤其,中高樓層建築物常因底層挑高、壁量不足,勁度或強度相較於相鄰樓層之變異性大,造成力量傳遞路徑分散,當受強震時易使低樓層產生大變形或破壞。配筋細節不良,如箍筋間距過大、鋼筋量不足、採用非耐震彎鉤等,以致柱構件變形能力不足。
國家地震工程研究中心實驗室之特點為高速度長衝程振動台,可適切模擬近斷層地震特性。首項試驗於2017 年7 月振動台實驗為一座1/2 縮尺之三層樓鋼筋混凝土建築物,接續於2018 年7 月增加樓層數至7 層樓建築,至於振動台上,輸入台灣代表性的近斷層地震力,主要目的為確認建築物在各種基本輸入強度下的動態特性和抗震性能。
基於台灣耐震設計規範是以靜力分析法與非線性靜力分析法為主,而為了掌握結構在振動中的所有動態反應非線性動力歷時分析是有必要的,而本研究採用日本株式會社構造計畫研究所開發之RESP 分析軟體與台灣業界常用軟體ETABS 和輔助程式TEASPA 運算集中塑鉸兩套軟體,採用非線性動力歷時分析前述實驗結果且比
較。
In 1999 Chi-Chi earthquake, in 2016 Mino earthquake and in 2018 Hualien earthquake show that there are often problems such as soft-story, poor force transmission and non-ductile reinforcement in the building structure system, causing serious damage or collapse. Specially, mid-high story buildings often have higher bottom-story and insufficient wall, causing the power transmission path to be dispersed. It is easy to cause large deformation or damage on the lower floors during the strong earthquake. Poor details of reinforcement such as excessive spacing of the hoops, insufficient steel bars, and the use of non-seismic hooks, so that the deformation capacity of the column members is insufficient.
This research presents a half-scale, three-story and seven story, reinforced concrete frame building that was shaken on the shaking table in the National Center for Research on Earthquake Engineering (NCREE) Tainan Laboratory in Taiwan. The main objective of this research is to determine the dynamic characteristics and the seismic performance of the test building under various base input intensities, representative of both ordinary and near-fault ground motions in Taiwan.
In order to grasp all the dynamic response of the structure on the ground motion, nonlinear dynamic analysis is necessary. In this study, the above experimental results were analyzed using the RESP analytical software developed by KOZO KEIKAKU ENGINEERING Inc. ,and ETABS developed by CSI and TEASPA to support that calculate hinge parameter, using these two to run nonlinear dynamic analysis.
[1]41-13ASCE/SEI. (2013). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers. Reston V.A.
[2]Babak Moaveni, A.M.ASCE; Xianfei He; Joel P. Conte, M.ASCE;José I. Restrepo, M.ASCE; and Marios Panagiotou, M.ASCE. (2011). System Identification Study of a 7-Story Full-Scale Building Slice Tested on the UCSD-NEES Shake Table. J. Struct. Eng.
[3]Carlos Eduardo Pon Aguilar , Shaking Table Test and Analysis of a Nonductile Building Structure Subjected to Near Fault Earthquakes , Master’s Thesis, National Cheng Kung University,2018.
[4]ChopraK.Anil. (2011). Dynamics of structions Theory and Applications to Earthquake Engineering. Pearson College Div.
[5]Architectural Institute of Japan, 2000. “Damping in Buildings”, pp.211.
[6]JapanInstitute ofArchitectural. (1997). Design Guideline for Earthquakes Resistant Reinforced Concrete Buildings Based on Inelastic Displacement Concept. 259-267.
[7]Marios Panagiotou, M.ASCE; José I. Restrepo, M.ASCE; and Joel P. Conte, M.ASCE. (2011). Shake-Table Test of a Full-Scale 7-Story Building Slice. Phase I: Rectangular Wall. J. Struct. Eng.
[8]PriestleySeible, F. and Calvi, M.M.J.N.,. (2007). Seismic Design and Retrofit of Bridges. New York: Wiley & Sons.
[9]S.Suzuki, Y.Yanagawa, M.Usami and M.Kimura. (2018). Fiber modeling of RC members that are compatible with material rigid plastic spring model considering hysteresis. Architectural Institute of Japan.
[10]Sofia Gavridou; John W. Wallace, F.ASCE; Takuya Nagae; Taizo Matsumori;Kenich Tahara, Dr.Eng.; and Kunio Fukuyama. (2017). hake-Table Test of a Full-Scale 4-Story Precast Concrete Building. I: Overview and Experimental Results. J. Struct. Eng.
[11]Sofia Gavridou; John W. Wallace, F.ASCE; Takuya Nagae; Taizo Matsumori;Kenich Tahara, Dr.Eng.; and Kunio Fukuyama. (2017). Shake-Table Test of a Full-Scale 4-Story PrecastConcrete Building. II: Analytical Studies. J. Struct. Eng.
[12]Takeda, Sozen and Nielsen. (1970). Reinforced Concrete Response to Simulated Earthquakes. Journal, Structual Division, ASCE, 頁 Vol.96, No.ST12.
[13](財)国土技術研究センター. (1993). New RC 研究開発概要報告書.
[14]崎野 健治・孫 玉平. (1993). コンファインド高強度コンクリートの中心圧縮性状に関する実験. コンクリート工学年次論文報告集, (頁 Vol.15、No.2).
[15]日本建築学会(1999). 鉄筋コンクリート造建物の靭性保証型耐震設計指針・同解説
[16]蕭輔沛、鍾立來、葉勇凱、簡文郁、沈文成、邱聰智、周德光、趙宜峰、翁樸文、楊耀昇、涂耀賢、柴駿甫、黃世建.(2013).校舍結構耐震評估與補強技術手冊第三版.國家地震工程研究中心
[17]周中哲、翁元滔、莊勝智. (2017). 建築結構非線性動力分析模擬交流論壇. 頁 國家地震工程研究中心.
[18]劉光晏;郭俊翔;趙書賢;王士庭;張國鎮;林昌佑. (2017). 斷層近域效應對工程設計參數之探討-以921集集地震為例. 土木水利, 頁 10-23.
[19]胡瑋秀.(2018). 台灣混凝土彈性模數折減對結構相關設計規範的影響研究.碩士論文.國立臺灣大學
[20]日本株式會社構造計畫研究所 (2018). 建築構造物の構造解析・振動解析プログラムRESP-D利用者マニュアル(計算編)
[21]日本株式會社構造計畫研究所 (2018). RESP-F3T (三次元フレーム汎用解析プログラム)
校內:2024-08-05公開