| 研究生: |
盧淑芬 Lu, Shu-Fen |
|---|---|
| 論文名稱: |
台灣地區乳癌病患雌激素受體-α基因多型性
及其臨床意義 Genetic Polymorphisms of Estrogen Receptor- α and Its Clinical Significance in Taiwanese Breast Cancer |
| 指導教授: |
楊孔嘉
Young, Kung-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫事技術學系 Department of Medical Technology |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 乳癌 |
| 外文關鍵詞: | breast cancer |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳癌是全世界女性最常見的惡性腫瘤之一,也是癌症致死的重要原因。依據世界衛生組織統計,北美、澳洲、西歐與北歐的乳癌發病率及死亡率高,而亞洲國家,包括台灣,發病率則低。但台灣地區乳癌的發病率近年來明顯上升,且發病高峰年齡比歐美國家提前十歲,顯示基因或環境因素導致臨床表徵上之差異。1896年,Beatson發現停經前婦女接受雙側卵巢切除術後乳癌病徵因此減緩,暗示類固醇荷爾蒙是乳癌的關鍵因素。在雌激素的效應下,雌激素受體在乳癌的生理發育扮演重要角色。雌激素受體蛋白屬固醇類核受體超家族成員之一,是由雌激素活化的轉錄因子。雌激素受體蛋白有兩個顯型-a與b。在正常乳房組織中,雌激素受體-a侷限於腺管與小葉的上皮細胞,這些細胞與乳癌癌化的主要細胞同源,因此a型雌激素受體在乳癌發生過程中極為重要。本研究主要是探討雌激素受體-a基因變異與乳癌的相關性。雌激素受體-a位於第6對染色體q25.1,包含8個外顯子,蛋白上包括荷爾蒙活化區、DNA結合區與轉錄激活區。雌激素受體-a基因突變和單一核苷酸基因多型性在高加索人種的研究資料多,而亞洲地區則付之闕如。在此研究,我們探討台灣雌激素受體-a基因突變的變異與其臨床意義。我們採集了來自國立成功大學附設醫院與行政院衛生署台南醫院的189名乳癌病人和177名正常對照組。病例和對照組的年齡分佈相近。用與聚合酶連鎖反應結合的單鏈構象多型性分析和定序作初步篩檢的工具。我們結果顯示台灣地區存在三個多型性位點:外顯子-1上的密碼子-10(TCT/TCC)、外顯子-4上的密碼子-325(CCC/CCG)、外顯子-8上的密碼子-594(ACG/ACA)。接著設計以融解曲線分析的專一位點之即時性聚合酶連鎖反應,完成進一歩分析。我們的結果發現雌激素受體-a基因的密碼子-10處,基因型頻率(P=0.026)與等位頻率(P=0.018)在乳癌病人和正常對照組有顯著的不同。在家族史的乳癌中,雌激素受體-a基因的密碼子-594處異合型594 ACG/ACA比同合型ACG/ACG,會有較低的危險性罹患家族性乳癌。密碼子-594處G等位基因會降低在早期發病的危險性。另外雌激素受體-a基因的密碼子-325和594多型性位點與淋巴結轉移相關,獨立或協力可作為預測乳癌病患是否發生淋巴轉移之生物標的。本研究首度顯示台灣地區雌激素受體-a基因多型性,與其乳癌的臨床相關性。
Breast cancer, one of the most common malignancies diagnosed in women worldwide, is the leading cause of cancer-related death. According the World Health Organization survey, North America, Australia, Western Europe and Northern Europe have high incidence and mortality rates from breast cancer. In 1896, Beatson observed that premenopausal breast-cancer patients resulted in remission of their disease after bilateral oophorectomy, which implicated steroid hormones being a major determinant of breast cancer. Estrogen receptor (ER) has important roles in modulating the effect of estrogen on development and growth of breast cancer. The human ER protein, a member of steroid nuclear receptor superfamily, is a ligand-activated transcription factor. The human ER protein consists two types, namely a and b. ERa expression is restricted to epithelial cells lining within ducts and lobules, where the most breast cancers come from. Therefore, our study aimed on the relationship between ERa and breast cancer. The ERa gene is located at chromosome 6q25.1, composed of eight exons, including regions important for hormone binding, DNA binding, and activation of transcription. The mutation and single nucleotide polymorphisms(SNP)sites have not been explored in Taiwan, an area with low incidence for breast cancer than in Western countries. In this study, we analyze the mutation and SNPs sites along with the ERa coding region, in search of linkage to clinical courses of breast cancer in Taiwanese population. We recruited 189 breast cancer patients and 177 normal controls from National Cheng Kung University Hospital and Tainan General Hospital, Department of Health, Taiwan, R.O.C. Cases and controls were matched by age. A polymerase chain reaction combined with single-strand conformation polymorphism (PCR-SSCP) and sequencing was exploited as an initial screening approach. Our study revealed three SNPs sites in exon 1 (codon 10, TCT/TCC), exon 4 (codon 325, CCC/CCG) and exon 8 (codon594, ACG/ACA). Subsequently, a site-specific real-time PCR in couple with melting curve analysis was designed for high-through assay. Our data showed that the genotypic (P=0.026) and allelic frequencies (P=0.018) of the ERa gene codon 10 polymorphism were significantly different between the breast cancer and control groups. Regarding family history of breast cancer, the codon 594 ACG/ACG revealed an increased risk. Furthermore, codon 594 G allele reduced a risk of early onset age. Notably, the ERa gene codon 325 and 594 polymorphisms had a reverse association with lymph node metastasis in a synergistic mode. This study first showed ERa gene polymorphisms in Taiwan, with the clinical relevance of breast cancer.
[1] Ferlay J, Bray F, Pisani P, Parkin DM. et al. GLOBOCAN 2000: Cancer Incidence, Mortality, and Worldwide Version 1.0., IARC CancerBase No. 5. Lyon :IARC Press 2001.
[2] Schwartsmann G. Breast cancer in South America: challenges to improve early detection and medical management of a public health problem. J Clin Oncol 2001;19(18 Suppl):118S-124S.
[3] Chen CJ, You SL, Lin LH, Hsu WL, Yang YW. Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol 2002;32 Suppl:S66-81.
[4] National Cancer Institute Surveillance, Epidemiology, and End Results Program, 1997-1999.
[5] http://www.bhp.doh.gov.tw/theme/file/200361320482ROHVOI/0307記者會表格.ppt
[6] http://crs.cph.ntu.edu.tw/crs_c/annual.html
[7] http://www.bhp.doh.gov.tw/theme/file/2003613204038OMESLF/88年癌症登記報告.ppt
[8] Claus ER, Risch NJ, Thompson WD. Age onset as an indicator of familial risk of breast cancer. Am J Epidemiol 1990;131(6):961-972.
[9] Titus-Ernstoff L, Longnecker MP, Newcomb PA, Dain B, Greenberg ER, Mittendorf R, Stampfer M, Willett W. Menstrual factors in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998;7(9):783-9.
[10] MacMahon B, Cole P, Lin TM, Lowe CR, Mirra AP, Ravnihar B, Salber EJ, Valaoras VG, Yuasa S. Age at first birth and breast cancer risk. Bull World Health Organ 1970;43(2):209-21.
[11] Brinton LA, Daling JR, Liff JM, Schoenberg JB, Malone KE, Stanford JL, Coates RJ, Gammon MD, Hanson L, Hoover RN. Oral contraceptives and breast cancer risk among younger women. J Natl Cancer Inst 1995;87(11):827-35.
[12] Hunter DJ, Willett WC. Diet, body build, and breast cancer. Annu Rev Nutr 1994;14:393-418.
[13] Easton DF, Bishop DT, Ford D, Crockford GP. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1993;52(4):678-701.
[14] Beatson GT. On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Lancet 1896;2:104-7.
[15] Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995;57:791-804.
[16] Grodstein F, Stampfer MJ, Manson JE, Colditz GA, Willett WC, Rosner B, Speizer FE, Hennekens CH. Postmenopausal estrogen and progestin use and the risk of cardiovascular disease. N Engl J Med 1996;335(7):453-61.
[17] Hanke H, Hanke S, Bruck B, Brehme U, Gugel N, Finking G, Muck AO, Schmahl FW, Hombach V, Haasis R. Inhibition of the protective effect of estrogen by progesterone in experimental atherosclerosis. Atherosclerosis 1996;121(1):129-38.
[18] Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer's disease in women. Am J Epidemiol 1994;140(3):256-61.
[19] Wickelgren I. Estrogen: A new weapon against Alzheimer's. Science 1997;276(5313):676-7.
[20] Vorherr H. Breast cancer Urban and Schwarzenberg Press Baltimore 1980.
[21] Walter P, Green S, Greene G, Krust A, Bornert JM, Jeltsch JM, Staub A, Jensen E, Scrace G, Waterfield M, et al. Cloning of the human estrogen receptor cDNA. Proc Natl Acad Sci U S A 1985;82(23):7889-93.
[22] Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J. Sequence and expression of human estrogen receptor complementary DNA. Science 1986;231(4742):1150-4.
[23] Menasce LP, White GR, Harrison CJ, Boyle JM. Localization of the estrogen receptor locus (ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique. Genomics 1993;17(1):263-5.
[24] Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93(12):5925-30.
[25] Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjold M, Gustafsson JA. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 1997;82(12):4258-65.
[26] Ponglikitmongkol M, Green S, Chambon P. Genomic organization of the human oestrogen receptor gene. EMBO J 1988;7(11):3385-8.
[27] McGuire WL, Chamness GC, Fuqua SA. Estrogen receptor variants in clinical breast cancer. Mol Endocrinol 1991;5(11):1571-7.
[28] McGuire WL, Chamness GC, Fuqua SA. Abnormal estrogen receptor in clinical breast cancer. J Steroid Biochem Mol Biol 1992;43(1-3):243-7.
[29] McGuire WL, Chamness GC, Fuqua SA. The importance of normal and abnormal oestrogen receptor in breast cancer. Cancer Surv 1992;14:31-40.
[30] Fuqua SA, Allred DC, Auchus RJ. Expression of estrogen receptor variants. J Cell Biochem Suppl 1993;17G:194-7.
[31] Lemieux P, Fuqua S. The role of estrogen receptor in tumor progression. J Steroid Biochem Mol Biol 1996;56:87-91.
[32] Karnik PS, Kulkarni S, Liu XP, Budd GT, Bukowski RM. Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res 1994;54(2):349-53.
[33] Lehrer S, Sanchez M, Song HK, Dalton J, Levine E, Savoretti P, Thung SN, Schachter B. Oestrogen receptor B-region polymorphism and spontaneous abortion in women with breast cancer. Lancet 1990;335(8690):622-4.
[34] Andersen TI, Heimdal KR, Skrede M, Tveit K, Berg K, Borresen AL. Oestrogen receptor (ESR) polymorphisms and breast cancer susceptibility. Hum Genet 1994;94(6):665-70.
[35] Roodi N, Bailey LR, Kao WY, Verrier CS, Yee CJ, Dupont WD, Parl FF. Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J Natl Cancer Inst 1995;87(6):446-51.
[36] Anderson TI, Wooster R, Laake K, Collins N, Warren W, Skrede M, Elles R, Tveit KM, Johnston SR, Dowsett M, Olsen AO, Moller P, Stratton MR, Borresen-Dale AL. Screening for ESR mutations in breast and ovarian cancer patients. Hum Mutat 1997;9(6):531-6.
[37] Schubert EL, Lee MK, Newman B, King MC. Single nucleotide polymorphisms (SNPs) in the estrogen receptor gene and breast cancer susceptibility. J Steroid Biochem Mol Biol 1999;71(1-2):21-7.
[38] Tsukamoto K, Inoue S, Hosoi T, Orimo H, Emi M. Isolation and radiation hybrid mapping of dinucleotide repeat polymorphism at the human estrogen receptor beta locus. J Hum Genet 1998;43(1):73-4.
[39] Westberg L, Baghaei F, Rosmond R, Hellstrand M, Landen M, Jansson M, Holm G, Bjorntorp P, Eriksson E. Polymorphisms of the androgen receptor gene and the estrogen receptor beta gene are associated with androgen levels in women. J Clin Endocrinol Metab 2001;86(6):2562-8.
[40] Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 1989;86(8):2766-70.
[41] Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989;5(4):874-9.
[42] Sarkar G, Yoon HS and Sommer SS. Screening for mutations by RNA single strand conformation (rSSCP): comparison with DNA-SSCP. Nucleic Acids Res 1992;20:871-8.
[43] Sheffield VC, Beck JS, Kwitek AE, Sandstrom DW and Stone EW. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics 1993;16:325-32.
[44] Livak KJ, Flood SJ, Marmaro J, Giusti W and Deetz K Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic-acid hybridization. PCR Methods Appl 1995;4:357-62.
[45] Desilva D, Reiser A, Herrmann M, Tabiti K, Wittwer C. Rapid genotying and quantification on the LightCycler with hybridization probes. Biochemica 1998;2:12-5.
[46] Lohmann S, Lehmann L, Tabiti K. Fast and flexible single nucleotide polymorphism(SNP)detection with the LightCycler system. Biochemica 2000;4:23-8.
[47] LightCycler-herpatitis A virus kit. Biochemica 2002;1:12.
[48] LightCycler HER/neu DNA quanitification kit. Biochemica 2001;2:14-5.
[49] LightCycler HER/neu RNA quanitification kit. Biochemica 2001;4:12.
[50] Optimization strategy. Technical Note 2000;LC 9:1-20.
[51] Speirs V, Skliris GP, Burdall SE, Carder PJ. Distinct expression patterns of ER alpha and ER beta in normal human mammary gland. J Clin Pathol. 2002;55(5):371-4.
[52] Iwase H, Greenman JM, Barnes DM, Hodgson S, Bobrow L, Mathew CG. Sequence variants of the estrogen receptor (ER) gene found in breast cancer patients with ER negative and progesterone receptor positive tumors. Cancer Lett 1996;108(2):179-84.
[53] Vasconcelos A, Medeiros R, Veiga I, Pereira D, Carrilho S, Palmeira C, Azevedo C, Lopes CS. Analysis of estrogen receptor polymorphism in codon 325 by PCR-SSCP in breast cancer: association with lymph node metastasis. Breast J 2002;8(4):226-9.
[54] Southey MC, Batten LE, McCredie MR, Giles GG, Dite G, Hopper JL, Venter DJ. Estrogen receptor polymorphism at codon 325 and risk of breast cancer in women before age forty. J Natl Cancer Inst. 1998;90(7):532-6.
[55] Kang HJ, Kim SW, Kim HJ, Ahn SJ, Bae JY, Park SK, Kang D, Hirvonen A, Choe KJ, Noh DY. Polymorphisms in the estrogen receptor-alpha gene and breast cancer risk. Cancer Lett 2002;178(2):175-80.
[56] Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D; International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001;409(6822):928-33.
[57] http://www.ncbi.nlm.nih.gov/SNP/index.html
[58] Fuqua SA, Chamness GC, McGuire WL. Estrogen receptor mutations in breast cancer. J Cell Biochem 1993;51(2):135-9.
[59] Picard D, Bunone G, Liu JW, Donze O. Steroid-independent activation of steroid receptors in mammalian and yeast cells and in breast cancer. Biochem Soc Trans 1997;25(2):597-602.
[60] Cheng SH, Tsou MH, Liu MC, Jian JJ, Cheng JC, Leu SY, Hsieh CY, Huang AT. Unique features of breast cancer in Taiwan. Breast Cancer Res Treat 2000;63(3):213-23.
[61] Curran JE, Lea RA, Rutherford S, Weinstein SR, Griffiths LR. Association of estrogen receptor and glucocorticoid receptor gene polymorphisms with sporadic breast cancer. Int J Cancer 2001;95(4):271-5.
[62] Kurebayashi J, Otsuki T, Kunisue H, Mikami Y, Tanaka K, Yamamoto S, Sonoo H. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res 1999;90(9):977-81.
[63] Salven P, Lymboussaki A, Heikkila P, Jaaskela-Saari H, Enholm B, Aase K, von Euler G, Eriksson U, Alitalo K, Joensuu H. Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors. Am J Pathol 1998;153(1):103-8.
[64] Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192-8.
[65] Kawai H, Li H, Chun P, Avraham S, Avraham HK. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells. Oncogene 2002;21(50):7730-9.
[66] Rochefort H, Capony F, Garcia M. Cathepsin D: a protease involved in breast cancer metastasis. Cancer Metastasis Rev 1990;9(4):321-31.
[67] Garcia M, Platet N, Liaudet E, Laurent V, Derocq D, Brouillet JP, Rochefort H. Biological and clinical significance of cathepsin D in breast cancer metastasis. Stem Cells 1996;14(6):642-50.
[68] Lah TT, Cercek M, Blejec A, Kos J, Gorodetsky E, Somers R, Daskal I. Cathepsin B, a prognostic indicator in lymph node-negative breast carcinoma patients: comparison with cathepsin D, cathepsin L, and other clinical indicators. Clin Cancer Res 2000;6(2):578-84.