| 研究生: |
陳凌哲 Chen, Lin-Jer |
|---|---|
| 論文名稱: |
單晶黃銅礦相吸收層奈米材料之合成特性分析與其薄膜太陽能電池元件的應用 Synthesis and Characterization of Chalcopyrite Nanocrystals as Absorber Layer for Low-Cost Thin Film Solar Cells |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 放電紡絲法 、溶劑熱浴法 、黃銅礦相 、吸光奈米材料 、薄膜太陽電池 |
| 外文關鍵詞: | solvothermal process, electrospinning process, chalcopyrite, absorber nanomaterials, thin film solar cells |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要目的是希望藉由非真空製程之溶劑浴熱法與放電紡絲法來製備薄膜太陽電池吸光奈米材料,在溶劑浴熱法與放電紡絲法環境中,藉由分子自組裝的機制,配合各種不同溶劑或不同反應條件,提供一個反應途徑來生成吸光奈米材料,將所製備的吸光奈米材料製備成單層薄膜,並將其堆疊成薄膜太陽能電池。
因此基於此推論,本研究首先以氯化亞銅、氯化銦、氯化鎵、硒粉與PVB高分子為前驅物,在氮氣氛圍中依適當的比例加入無水乙醇進行攪拌數小時。藉由放電紡絲法成功製備出PVB/Cu (InxGa1-x) Se2 複合奈米纖維,再經由熱處理將高分子分解而形成黃銅礦相的Cu (InxGa1-x) Se2 奈米纖維,並依此途徑製備出另ㄧ替代性吸光層材料Cu (InxGa1-x) S2 奈米纖維,進而探討奈米材料的型態、結晶性、熱行為、組成比例、光電性質與反應機制。利用簡易、低製備成本的放電紡絲法合成半導體奈米纖維材料為吸光層,其堆疊成薄膜太陽能電池轉換效率可達1.96 %。
另外,本論文也以氯化銅、氯化銦、氧化硼、硒粉為前驅物,在氮氣氛圍中依適當的比例與二乙烯三胺進行攪拌數小時,隨後置入鐵弗龍壓力釜中於180oC反應36小時。藉由排除煅燒處理而減少晶粒邊界問題與產生高純度晶粒的優勢,成功利用溶劑浴熱法製備出純度高、含二元相少且結構穩定的黃銅礦相的CuBSe2與Cu (In0.9B0.1) Se2 新穎奈米棒結構,並可藉由調整參雜比例之不同而改變其能隙值,進而探討奈米材料的型態、結晶性、組成比例、光電性質與反應機制,其堆疊成薄膜太陽能電池轉換效率可達1.89 % 與2.34 %。
因此本論文以上述技術來製備出多種類與規格的薄膜太陽電池吸光奈米材料。打破以往合成方法只能適用於某些特殊材料或昂貴設備合成的限制,只要掌握適當的前驅物與鉗合劑,此種方法將可發展成適用所有太陽電池吸光奈米材料的技術,並運用此種技術將薄膜太陽電池的發展朝向更高效率、高安全、更低成本的方向邁進。
This work main purpose is the expectation prepares the thin film solar cell absorber material by the solvothermal process or electrospinning process. In the solvothermal process or electrospinning process of the self-assembly mechanism, and controls the suitable condition, such as different solvents, and reaction conditions to produce the chalcopyrite absorber materials, and synthesis single-layer film of absorber layer by drop-casting. We fabricated the first batch of thin film solar cells in our laboratory using these films following chemical bath deposition of CdS layer, and RF sputtering of 60 nm intrinsic zinc oxide and 200 nm of ITO layers.
Basic on our inference from these research, a typical reaction is carried about by adding CuCl, elemental Se, InCl3 and GaCl3, PVB, and ethanol absolute, while magnetically stirred at room temperature for 2 h, followed by N2 bubbling at 80 °C for 2 h while stirring to obtain a homogenous precursor of PVB/Cu(InxGa1-x) Se2 composites. Homogeneous precursor solutions of PVB/Cu (InxGa1-x) Se2 composites were prepared and used immediately for electrospinning. Finally PVB/Cu (InxGa1-x) Se2 nanofibers were obtained. A completely crystalline structure formed in the chalcopyrite Cu (In0.8Ga0.2) Se2 nanofibers with the addition of PVB to the electrospinning step after annealing. The device parameters for a single junction Cu (In0.8Ga0.2) Se2 solar cell under AM1.5G are as follows: open circuit voltage of 311 mV, short-circuit current of 23.4 mA/cm2, fill factor of 27 %, and a power conversion efficiency of 1.96 %.
In addition, a typical experimental procedure, the product chalcopyrite Cu (InxB1-x) Se2 can be prepared from a stoichiometric mixture of Se powder, CuCl2, InCl3 and BO3. The reagents were loaded into Teflon lined autoclave, which was then filled with anhydrous diethylenetriamine up to 80% of the total volume. The autoclave was maintained at 180 oC for 36 h, and then allowed to cool to room temperature naturally. The main advantages of solvothermal synthesis are related to homogeneous nucleation processes due to elimination of the calcinations step to produce very low grain sizes and high purity powders. The band gaps of the chalcopyrite Cu (InxB1-x) Se2 nanocrystals can be readily tuned between 3.13 and 1.05 eV by adjusting the ratios of boron to indium. The device parameters for a single junction CuBSe2 and Cu (In0.9B0.1) Se2 thin film solar cell under AM1.5G are as follows: open circuit voltage of 310 and 265 mV, short-circuit current of 25.5 and 25.9 mA/cm2, fill factor of 24 % and 34 %, and a power conversion efficiency of 1.89 % and 2.34 %.
Therefore, we plan to prepare different types absorber materials for thin film solar cells by the solvothermal process and electrospinning process. Further more, We can possibility demonstrates the methods of solvothermal and electrospinning process approach for absorber layers from fabricating high-efficiency thin film solar cells and provide more evidences in this approach, and offer a low-cost, high-efficiency route to thin-film PV devices fabrication.
[1] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafarmana, "CuIn1-xAlxSe2 thin films and solar cells," J. Appl. Phys., vol. 91, pp.10153-10156, 2002.
[2] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, " 19.9 %-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2 % Fill Factor ," Prog. PhotoVoltaics: Res. Appl., vol.16, pp. 235-239, 2008.
[3] A. D. Vos, " Detailed balance limit of the efficiency of tandem solar cells," J. Phys. D: Appl. Phys., vol. 13, pp. 839-46, 1980.
[4] M. A.Contreras, M. J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward and K. Ramanathan,"Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells ," Thin Solid Films, vol. 403–404, pp. 204-211, 2002.
[5] A. O. Pudov, J. R. Sites, M. A. Contreras, T. Nakada and H.W. Schock, " CIGS J-V Distortions in the Absence of Blue Photons," Thin Solid Films, vol. 480–481, pp. 273-278, 2005.
[6] K.S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray, " Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles," J. Am. Chem. Soc., vol. 127, pp. 7140-47, 2005.
[7] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, " Controlled growth of tetrapod-branched inorganic nanocrystals," Nat. Mater., vol. 2, pp. 382-5, 2003.
[8] X. Zhang, M. Brynda, R. D. Britt, E. C. Carroll, D. S. Larsen, A. Y. Louie and S. M. Kauzlarich, " Synthesis and Characterization of Manganese-Doped Silicon Nanoparticles: Bifunctional Paramagnetic-Optical Nanomaterial," J. Am. Chem. Soc., vol.129, pp. 10668-9, 2007.
[9] X. Lu, K. J. Ziegler, A. Ghezelbash, K. P. Johnston and B. A. Korgel, " Synthesis of Germanium Nanocrystals in High Temperature Supercritical Fluid Solvents," Nano Lett., vol.4, pp. 969-74, 2004.
[10] B. Li, Y. Xie, J. Huang and Y. Qian, " Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles," Adv. Mater., vol.11, pp. 1456-59, 1999.
[11] P. M. Allen and M. G. Bawendi, " Ternary I−III−VI Quantum Dots Luminescent in the Red to Near-Infrared ," J. Am. Chem. Soc., vol.130, pp. 9240-41, 2008.
[12] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel, " Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics," J. Am. Chem. Soc., vol.130, pp. 16770-77, 2008.
[13] S. Siebentritt, " Wide gap chalcopyrites: material properties and solar cells," Thin Solid Films, vol.403-404, pp. 1-8, 2002.
[14] B. J. Stanbery, " Copper Indium Selenides and Related Materials for Photovoltaic Devices," Crit. ReV. Solid State Mater. Sci., vol. 27, pp. 73-117, 2002.
[15] Z. Q. Ma and B. X. Liu, "Boron-doped diamond-like amorphous carbon as photovoltaic films in solar cell," Solar Energy Materials and Solar Cells, vol. 69(4), pp. 339–344, 2001.
[16] K. L. Narayanan and M.Yamaguchi, "Photovoltaic effects of a: C/C60/Si ( p–i–n) solar cell structures," Solar Energy Materials and Solar Cells, vol. 75(3–4) pp. 345–350, 2003.
[17] K. L. Chopra, P. D. Paulson and V. Dutta, "Thin-Film Solar Cells: An
Overview," Prog. Photovolt: Res. Appl., vol.12, pp. 69–92, 2004.
[18] T. J. Coutts, K. A. Emery and J. S.Ward, "Modeled performance of polycrystalline thin-film tandem solar cells," Progress in Photovoltaic: Research and Applications, vol.10, pp. 195–203, 2002.
[19] R. W. Birkmire, "Compound polycrystalline solar cells: recent progress and Y2 K perspective," Solar Energy Materials and Solar Cells, vol.65, pp. 17–28, 2001.
[20] J. Yang, A. Banerjee, T. Glatfelter, K. Hoffman, X. Xu and S. Guha, "Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution," Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, pp. 380–385, 1994.
[21] R. R. King, J. H. Ermer, D. D. Krut, J. E. Granata, M. S. Gillanders, B. T. Cavicchi and N. H. Karam, "Advances in high-efficiency III–V multijunction solar cells," Proceedings of the Space Power Workshop, 2001.
[22] D. L. Staebler and C. R.Wronski, "Reversible conductivity changes in discharge-produced amorphous Si," Applied Physics Letters, vol. 31(4), pp. 292–294, 1977.
[23] S. Guha and J. Yang, "Science and technology of amorphous silicon alloy photovoltaics," IEEE Transactions on Electron Devices, vol. 46, pp. 2080–2085, 1999.
[24] I. Kaiser, K. Ernst, ChH. Fischer, R. Ko¨nenkamp, C. Rost, I. Sieber and MCh. Lux-Steiner, "The eta-solar cell with CuInS2: a photovoltaic cell concept using an extremely thin absorber (eta) ," Solar Energy Materials and Solar Cells, vol. 67(1–4), pp. 89–96, 2001.
[25] T. Nakada, T. Kume, T. Mise and A. Kunioka, "Superstrate-type Cu (In, Ga)Se2 thin-film solar cells with ZnO buffer layers," Japan Journal of Applied Physics, vol, 37, pp. L499, 1998.
[26] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, "Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells," Progress in Photovoltaics Research and Applications, vol. 11, pp. 225–230, 2003.
[27] M. Bodegard, L. Stolt and J. Hedstrom, "The influence of sodium on the grain boundary of CuInSe2 films for photovoltaic application," Proceedings of the 12th European Photovoltaic Solar Energy Conference, pp.743–1746, 1994.
[28] D. Soler, M. Fonrodona, C. Voz, J. M. Asensi, J. Bertomeu and J. Andreu, "Substrate influence on the properties of doped thin silicon layers grown by Cat-CVD," Thin Solid Films, vol. 430(1–2), pp. 157–160, 2003.
[29] K. L. Chopra, S. Major and D. K. Pandya, "Transparent conductors–a status review," Thin Solid Films, vol. 102(1), pp. 1–46, 1983.
[30] S. Major and K. L. Chopra, "Indium-doped zinc oxide films as transparent electrodes for solar cells," Solar Energy Materials., vol. 17(5), pp. 319–327, 1988.
[31] R. G. Gordon, "Criteria for choosing transparent conductors," MRS Bulletin, pp. 52–57, 2000.
[32] N. Romeo, A. Bosio, V. Canevari, M. Terheggen and R. L. Vaillant, "Comparison of different conducting oxides as substrates for CdS/CdTe thin-film solar cells," Thin Solid Films, vol. 431–432, pp. 364–368, 2003.
[33] S. Hegedus, B. Sopori and P. D. Paulson, "Optical design and analysis of textured a-Si solar cells," Proceedings of the 29th IEEE Photovoltaic Specialists Conference, pp.1122–1125, 2002.
[34] B. E. McCandless and S. S. Hegedus, "Influence of CdS window layer on thin-film CdS/CdTe solar cell performance," Proceedings of the 22th IEEE Photovoltaic Specialists Conference, pp. 967–972, 1991.
[35] I. J. Kaur, D. K. Pandya and K. L. Chopra, "Growth kinetics and polymorphism of chemically deposited CdS films," Journal of the Electrochemical Society, vol. 127, pp. 943, 1980.
[36] T. Tawada, M, Kondo, H. Okamoto and Y. Hamakawa, "Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells," Solar Energy Materials, vol. 6, pp. 299–315, 1982.
[37] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk and D. Braunig, "Efficient CuInS2 solar cells from a rapid thermal process (RTP) ," Solar Energy Materials and Solar Cells, vol. 67(1–4), pp. 159–166, 2001.
[38] J. Hedstrom and H. Ohlse´n, "ZnO/CdS/Cu(In,Ga)Se2 thin-film solar cells with improved performance," Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, pp.364–371, 1993.
[39] W. N. Shafarman, R. Klenk and B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap," Journal of Applied Physics, vol.79, pp. 7324–7328, 1996.
[40] P. D. Paulson, M. W. Haimbodi, S, Marsillac, R. W. Birkmire and W. N. Shafarman, "CuIn1–xAlxSe2 thin-films and solar cells," Journal of Applied Physics, vol. 91, pp. 10153–10156, 2002.
[41] M. Engelmann, B. E. McCandless and R.W. Birkmire, "Formation and analysis of graded CuIn (Se1-ySy)2 films," Thin Solid Films, vol. 387(1–2), pp. 14–17, 2001.
[42] T. Wada, N. Kohara, T. Negami and M. Nishitani, "Chemical and structural characterization of Cu(In,Ga)Se2/Mo interface in Cu(In,Ga)Se2 solar calls," Japan Journal of Applied Physics, vol. 35, pp. L1253–L1256, 1996.
[43] K. Orgassa, H. W. Schock and J. H.Werner, "Alternative back contact materials for thin-film Cu(In,Ga)Se2 solar cells," Thin Solid Films, vol. 431–432(1), pp. 387–391, 2003.
[44] T. J. Vink, M. A. J. Somers, J. L. C. Daams and A. G. Dirks, "Stress, strain, and microstructure of sputter-deposited Mo thin-films," Journal of Applied Physics, vol. 70, pp. 4301–4308, 1991.
[45] B. J. Stanbery, "Copper Indium Selenides and Related Materials for Photovoltaic Devices," Critical Reviews in Solid State and Materials Sciences, vol. 27(2), pp. 73–117, 2002.
[46] S. H.,Wei, L. G. Ferreira and A. Zunger, "First-principles calculation of the order-disorder transition in chalcopyrite semiconductors," Phys. Rev. B, vol. 45, pp. 2533, 1992.
[47] H. Peng, D. T. Schoen, S. Meister, X. F. Zhang, and Y. Cui, " Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires," J. Am. Chem. Soc., vol. 129, pp. 34-35, 2007.
[48] J. F. Guillemoles, L. Kronik, D. C. U. Rau, A. Jasenek and H. W. Schock, " Stability Issues of Cu(In,Ga)Se2-Based Solar Cells," J. Phys. Chem. B, vol. 104, pp. 4849-62, 2000.
[49] D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang and Y. F. Lu, " Synthesis of Cu−In−S Ternary Nanocrystals with Tunable Structure and Composition," J. Am. Chem. Soc., vol. 130, pp. 5620-21, 2008.
[50] J. P. Xiao, Y. Xie, R. Tang and Y. T. Qian, " Synthesis and Characterization of Ternary CuInS2 Nanorods via a Hydrothermal Route," J. Solid State Chem., vol. 161, pp. 179-83, 2001.
[51] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, " Synthesis and Characterization of Colloidal CuInS2 Nanoparticles from a Molecular Single-Source Precursor," J. Phys. Chem. B, vol. 108, pp. 12429-35, 2004.
[52] J. J. Nairn, P. J. Shapiro, B. Twamley, T. Pounds, R. vonWandruszka, T. R. Fletcher, M. Williams, C. Wang and M. G. Norton, " Preparation of Ultrafine Chalcopyrite Nanoparticles via the Photochemical Decomposition of Molecular Single-Source Precursors," Nano Lett., vol. 6, pp. 1218-23, 2006.
[53] M. A. Malik, P. O’Brien and N. Revaprasadu, " A Novel Route for the Preparation of CuSe and CuInSe2 Nanoparticles," Adv. Mater., vol. 11, pp. 1441-4, 1999.
[54] H. Z. Zhong, Y. C. Li, M. F. Ye, Z. Z. Zhu, Y. Zhou, C. H. Yang and Y. F. Li, " A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent," Nanotechnology, vol. 18, pp. 025602 1-5, 2007.
[55] J. J. Qiu, Z. G. Jin, W. B. Wu and L. Xiao, " Characterization of CuInS2 thin films prepared by ion layer gas reaction method," Thin Solid Films, vol. 510, pp. 1-5, 2006.
[56] C. P. Chan, H. Lam and C. Surya, " Preparationof Cu2ZnSnS4 films by electrodeposition using ionic liquids," Sol. Energy Mater. Sol. Cells, vol. 94, pp. 207-11, 2010.
[57] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, " Hybrid Nanorod-Polymer Solar Cells," Science, vol. 295, pp. 2425-27, 2002.
[58] H. Xiao, J. Tahir-Kheli, and W. A. Goddard, " Accurate Band Gaps for Semiconductors from Density Functional Theory," J. Phys. Chem. Lett., vol.2, pp.212–217, 2011.
[59] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka- Yao-Matsuo, M. Miyazaki and H. Maeda, " Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System," Chem. Mater., vol. 18, pp. 3330-35, 2006.
[60] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, " Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors," Chem. Mater., vol. 15 (16), pp. 3142–3147, 2003.
[61] T. Kuykendall, P. Ulrich, S. Aloni and P. D. Yang, " Complete composition tunability of InGaN nanowires using a combinatorial approach ," Nat. Mater., vol. 6, pp. 951-6, 2007.
[62] Y. G. Chun, K. H. Kim and K. H. Yoon, " Synthesis of CuInGaSe2 nanoparticles by solvothermal route," Thin Solid Films, vol. 480, pp. 46–49, 2005.
[63] J. Tang, S. Hinds, S. O. Kelley and E. H. Sargent, " Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles," Chem. Mater., vol. 20, pp. 6906-10, 2008.
[64] Y. H. Yang and Y. T. Chen, " Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods," J. Phys. Chem. B, vol. 110 (35), pp. 17370– 17374, 2006.
[65] J. Doshi and D. H. Reneker, " Electrospinning Process and Applications of Electrospun Fibers," J. Electrostatics, vol. 35(2-3), pp.151-60, 1995.
[66] H. Fong, I. Chun and D. H. Reneker, " Beaded nanofibers formed during electrospinning," Polymer, vol. 40(16), pp. 4585-92, 1999.
[67] C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, " Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, vol. 40(26), pp. 7397-407, 1999.
[68] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen and N. C. Tan, " The effect of processing variables on the morphology of electrospun nanofibers and textiles," Polymer, vol. 42(19), pp. 261-72, 2001.
[69] H. Liu and Y. L. Hsieh, " Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate.," J. Polym Sci, Part B: Polym Phys., vol. 40(18), pp. 2119-29, 2002.
[70] W. Salalha, Y. Dror, R. L. Khalfin, Y. Cohen, A. L. Yarin and E. Zussman, " Single-Walled Carbon Nanotubes Embedded in Oriented Polymeric Nanofibers by Electrospinning," Langmuir, vol. 20(22), pp. 9852-5, 2004.
[71] M. G. McKee, G. L. Wilkes, R. H. Colby and T. E. Long, " Correlations of M. G. McKee, G. L. Wilkes, R. H. Colby and T. E. Long, " Correlations of Polyesters," Macromolecules, vol. 37(5), pp.1760-7, 2004.
[72] L. J. Chen, J. D. Liao, S. J. Lin, Y. J. Chuang and Y. S. Fu. " Synthesis and characterization of PVB/silica nanofibers by electrospinning process," Polymer, vol. 50, pp. 3516-21, 2009.
[73] C . Shao, H . Guan, Y . Liu and R. Mu, " MgO nanofibres via an electrospinning technique," J. Mater. Sci., vol. 41, pp. 3821-24, 2006.
[74] H . Wu and W. Pan, " Preparation of Zinc Oxide Nanofibers by Electrospinning," J. Am. Ceram. Soc., vol. 89, pp. 699-701, 2006.
[75] W , Sigmund, J . Yuh, H . Park, V . Maneeratana, G . Pyrgiotakis, A . Daga, J . Taylor and J. C. Nino, " Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems," J. Am. Ceram. Soc., vol. 89, pp. 395-407, 2006.
[76] R . Ramakrishnan, S . Sundarrajan, J . Rajen and S. Ramakrishna, " Nanostructured ceramics by electrospinning," J. Appl. Phys., vol. 102, pp. 111101-16, 2007.
[77] D. Li, J. T. McCann, Y. N. Xia and M. Marquez, " Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes," J. Am. Ceram. Soc., vol. 89, pp. 1861-69, 2006.
[78] A .Yang, X . Tao, G. K. H. Pang and K. G. G. Siu, " Preparation of Porous Tin Oxide Nanobelts Using the Electrospinning Technique," J. Am. Ceram. Soc., vol. 91, pp. 257-62, 2008.
[79] E. Matijevi, " Preparation and properties of uniform size colloids," Chem. Mater., vol. 5, pp. 412-426, 1993.
[80] L. J. Chen, J. D. Liao, Y. J. Chuang, Y. S. Fu, "Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template," J. Nanopart. Res., vol. 13, pp. 783-790, 2011.
[81] W. Wang, B, Poudel, J, Yang, D. Z. Wang and Z. F. Ren, " High-Yield Synthesis of Single-Crystalline Antimony Telluride Hexagonal Nanoplates Using a Solvothermal Approach," J. Am. Chem. Soc., vol. 127, pp. 13792-13793, 2005.
[82] J. S. Lee and S. C. Choi, " Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process," J. Eur. Ceram. Soc., vol. 25, pp. 3307–3314, 2005.
[83] J. Y. Lao, J. G. Wen and Z. F. Ren, " Hierarchical ZnO Nanostructures," Nano. Lett., vol. 2, pp. 1287-1291, 2002.
[84] J. Zhang, L. Sun, J. Yin, H. Su, C. Liao and C. Yan, " Control of ZnO Morphology via a Simple Solution Route," Chem. Mater., vol. 14, pp. 4172-4177, 2002.
[85] T. Nagano, S. Fujisaki, K. Sato, K. Hataya, Y. Iwamoto, M. Nomura and S. I. Nakao," Relationship between the Mesoporous Intermediate Layer Structure and the Gas Permeation Property of an Amorphous Silica Membrane Synthesized by Counter Diffusion Chemical Vapor Deposition," J. Am. Ceram. Soc., vol. 91, pp. 71–76, 2008.
[86] J. S. Lee and S. C. Choi, " Crystallization behavior of nano-ceria powders by hydrothermal nsynthesis using a mixture of H2O2 and NH4OH," Mater. Lett., vol. 58, pp. 390–393, 2004.
[87] R. R. Piticescu, C, Monty, D, Taloi, A, Motoc and S. Axinte, " Hydrothermal synthesis of zirconia nanomaterials," J. Eur. Ceram. Soc., vol. 21, pp. 2057–2060, 2001.
[88] S. H. Yu, " Hydrothermal/ Solvothermal Processing of Advanced Ceramic Materials," J. Ceram. Soc. Jpn., vol. 109, pp. S65–S75, 2001.
[89] G. C. Xi, K. Xiong, Q. B. Zhao, R. Zhang, H. B. Zhang and Y. T. Qian, " Nucleation−Dissolution−Recrystallization: A New Growth Mechanism for t-Selenium Nanotubes," Cryst. Growth Des., vol. 6, pp. 577-82, 2006.
[90] C. H. Jia, L. D. Sun, Z. G. Yan, L. P. You, F. Luo, X. D. Han, Y. C. Pang, Z. Zhang and C. H. Yan, " Single-Crystalline Iron Oxide Nanotubes," Angew. Chem., vol. 117, pp. 4402-7, 2005.
[91] X. Zhou, S. Chen, D. Zhang, X. Guo, W. Ding and Y. Chen, " Microsphere Organization of Nanorods Directed by PEG Linear Polymer," Langmuir, vol. 22, pp. 1383-1387, 2006.
[92] J. Zhou, G. Zhao, B. Song and G. Han, " Solvent-controlled synthesis of three-dimensional TiO2 nanostructures via a one-step solvothermal route," CrystEngComm, DOI: 10.1039/c0ce00793e, pp. 1-9, 2011.
[93] T. Shanmugapriya, R. Vinayakan, K. G. Thomas and P. Ramamurthy, " Synthesis of CdS nanorods and nanospheres: shape tuning by the controlled addition of a sulfide precursor at room temperature," CrystEngComm, DOI: 10.1039/c0ce00374c, pp. 1-6, 2011.
[94] J. Y. Choe, K. J. Kim and D. Kim, " Properties of Cadmium Sulfide Thin Films Deposited by Chemical Bath Deposition With Ultrasonication," Metals and Mater., vol. 3, pp. 265-271, 1997.
[95] D. H. Reneker and I. Chun, " Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, pp. 216-23, 1996.
[96] L. J. Chen, J. D. Liao, Y. J. Chuang, K. C. Hsu, Y. F. Chiang, Y. S. Fu, "Synthesis and characterization of PVP/LiCoO2 nanofibers by electrospinning route," Journal of Applied Polymer Science, doi: 10.1002/app.33499, 2011.
[97] M. R. Karim, H. W. Lee, R. Kim, B.C. Ji, J.W. Cho, T.W. Son, W. Oh and J.H. Yeum, " Preparation and characterization of electrospun pullulan/montmorillonite nanofiber mats in aqueous solution," Carbohydr. Polym., vol. 78, pp.336-42, 2009.
[98] Y. Y. Chen and W. C. J. Wei, " Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive," J. Eur. Ceram. Soc., vol. 21, pp. 2535, 2001.
[99] H. Zhang, H. Song, B. Dong, L. Han, G. Pan, X. Bai, L. Fan, S. Lu, H. Zhao and F. Wang, " Electrospinning Preparation and Luminescence Properties of Europium Complex/Polymer Composite Fibers," J. Phys. Chem. C, vol. 112, pp. 9155-9162, 2008.
[100] C. Wu, G. Wu, Z. Xiong, X. Han, H. Chu, T. He and P. Chen, " LiNH2BH3•NH3BH3: Structure and Hydrogen Storage Properties," Chem. Mater., vol. 22, pp. 3-5, 2010.
[101] A.F. Lotus, R. K. Feaver, L. A. Britton, E. T. Bender, D.A. Perhay, N. Stojilovic, R.D. Ramsier and G.G. Chase, " Characterization of TiO2–Al2O3 composite fibers formed by electrospinning a sol–gel and polymer mixture," Mater. Sci. Eng. B, vol. 167, pp.55-59, 2010.
[102] J. Stejskal and P. Kratochvil, " Polyaniline Dispersions. 5. Poly(vinyl alcohol) and Poly(N-vinylpyrrolidone) as Steric Stabilizers," Langmuir, vol. 12, pp. 3389-92, 1996.
[103] A. Riede, M. Helmstedt, V. Riede and J. Stejskal, " Polyaniline Dispersions. 9. Dynamic Light Scattering Study of Particle Formation Using Different Stabilizers," Langmuir, vol. 14, pp. 6767-71, 1998.
[104] M. Beaman and S. P. Armes, " Preparation and characterisation of polypyrrole colloids in non-aqueous media," Colloid Polym. Sci., vol. 271, pp. 70-75, 1993.
[105] S. M. Kim, G. S. Kim and S.Y. Lee, " Effects of PVP and KCl concentrations on the synthesis of gold nanoparticles using a solution plasma processing," Mater. Lett., vol. 62, pp. 4354-56, 2008.
[106] P. Ruenraroengsak and A. T. Florence, " The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels," International Journal of Pharmaceutics, vol. 298, pp.361-66, 2005.
[107] T. Maeda, T. Takeichi, and T. Wada, " Systematic studies on electronic structures of CuInSe2 and the other chalcopyrite related compounds by first principles calculations," Phys. Stat. Sol. (a), vol. 203 (11), pp. 2634–38, 2006.
[108] V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T. Adachi and B. A. Korgel, " Spray-deposited CuInSe2 nanocrystal photovoltaics," Energy Environ. Sci., vol.3, pp.1600–1606, 2010.
[109] Q. Guo, G. M. Ford, H. W. Hillhouse and R. Agrawal, " Sulfide Nanocrystal Inks for Dense Cu(In1−xGax)(S1−ySey)2 Absorber Films and Their Photovoltaic Performance," Nano Lett., vol. 9(8), pp. 3060-65, 2009.
[110] D. J. Lewis, P. B. Glover, M. C. Solomons, and Z. Pikramenou, " Purely Heterometallic Lanthanide(III) Macrocycles through Controlled Assembly of Disulfide Bonds for Dual Color Emission," J. Am. Chem. Soc.,2011, vol. 133, pp. 1033–1043, 2011.
[111] J. Zhou, G. Q. Bian, Y. Zhang, Q. Y. Zhu, C. Y. Li and J. Dai, " One-Dimensional Indium Sulfides with Transition Metal Complexes of Polyamines," Inorg. Chem., vol. 46(16), pp. 6347-52, 2007.
[112] X. Gu, C. Li, X. Liu, J. Ren, Y. Wang, Y. Guo, Y. Guo and G. Lu, " Synthesis of Nanosized Multilayered Silica Vesicles with High Hydrothermal Stability," J. Phys. Chem. C, vol. 113, pp. 6472-79, 2009.
[113] S.H. Wei and A. Zunger, " Band offsets and optical bowings of chalcopyrites and Zn‐based II‐VI alloys," J. Appl. Phys., vol. 78, pp. 3846-56, 1995.
[114] M. Harati, J. Jia, K. Giffard, K. Pellarin, C. Hewson, D. A. Love, W. M. Lau and Z. Ding, " One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells," Phys. Chem. Chem. Phys., vol. 12, pp. 15282-90, 2010.
[115] V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, D. K. Reid, D. J. Hellebusch, T.Adachi and B. A. Korgel, "Spray-deposited CuInSe2 nanocrystal photovoltaics nanocrystal photovoltaics, " Energy Environ. Sci., vol. 3, pp. 1600-6, 2010.
[116] Michelle D. Regulacio and Ming-Yong Han, " Composition-Tunable Alloyed Semiconductor Nanocrystals," Acc. Chem. Res., vol.43 (5), pp 621–630, 2010.
[117] D. Pan, X. Wang, Z. H. Zhou, W. Chen, C. Xu and Y. Lu, " Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps," Chem. Mater., vol. 21, pp. 2489-93, 2009.
[118] J. Llanos, A. Buljan, C. Mujica and T. J. Ramirez, " Electron transfer and electronic structure of KCuFeS2," J. Alloys Compd., vol. 234, pp. 40-42, 1996.
[119] E. P. Domashevskayaa, V. V. Gorbachev, V. A. Terekhova, V. M. Kashkarova, E. V. Panfilova and A. V. Shchukarev, " XPS and XES emission investigations of d–p resonance in some copper chalcogenides," J. Electron Spectrosc. Relat. Phenom., vol. 114–116, pp. 901-8, 2001.
[120] T. T. Xu, J. G. Zheng, N. Wu, A. W. Nicholls, J. R. Roth, D. A. Dikin, and R. S. Ruoff, " Crystalline Boron Nanoribbons: Synthesis and Characterization," Nano Lett., vol. 4 (5), pp. 963-68, 2004.
[121] D. Q. Yang and E. Sacher, " Core/Shell Formation of Gold Nanoparticles Induced on Exposure to N,N-Dimethylformamide: Chemical and Morphological Changes," J. Phys. Chem. C, vol. 111, pp. 14320-14326, 2007.
[122] M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egass and R. Noufi, " Diode Characteristics in State-of-the-Art ZnO/CdS/ Cu(In1-xGax)Se2 Solar Cells," Prog. Photovolt: Res. Appl., vol. 13, pp. 209-16, 2005.
校內:2016-07-20公開