簡易檢索 / 詳目顯示

研究生: 許維鴻
Hsu, Wei-Hung
論文名稱: 低溫燒結鎳銅鋅鐵氧磁體變阻性質之研究
A study on the varistor property of low-temperature-fired NiCuZn ferrites
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 變阻器鎳銅鋅鐵氧磁體熱處理降溫速率
外文關鍵詞: varistor, ferrite, cooling rate, thermal process
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鎳銅鋅鐵氧磁體中添加變阻形成劑氧化鉍可做出具有變阻性質之電感-變阻器之複合材料,由於聚集在晶界的二次相會提高試片之變阻性質,故藉由改變試片燒結之降溫速率與多增加一段熱處理讓位於晶界附近之二次相增多進而提升變阻性質。
    在改變燒結之降溫速率時發現,鉍有擴散現象且多經一段熱處理後會使擴散現象加劇,擴散的鉍與其他元素反應形成二次相聚集在晶界,此富鉍二次相的厚度為影響變阻性質之主因。
    Zn0.5Ni0.3Cu0.19Nb0.01Fe2.1O4 +δ + 5wt%Bi2O3以950℃燒結2小時爐冷到室溫,再經650℃熱處理1小時可得到非線性係數10.8與在頻率10MHz初導磁係數約225之變阻器-電感之多功能材料。

    A low temperature-fired multifunctional varistor-magnetic ferrite materials can be obtained by adding Bi2O3 into NiCuZn ferrites. The varistor property can be promoted by choosing a proper cooling rate and adding a thermal annealing process after sintering to result in the bismuth diffusion and the precipitation of the Bi-rich second phase near the grain boundary.
    The multifunctional varistor-magnetic ferrite material with a nonlinear coefficient, α, of 10.8 and initial permeability of 225 was obtained for the Zn0.5Ni0.3Cu0.19Nb0.01Fe2.1O4 +δ + 5wt%Bi2O3 sintering at 950oC for 2 h, furnace cooling to room temperature and then annealing at 650oC for 1 h.

    摘要........................................3 Abstract.....................................4 表目錄........................................8 圖目錄........................................9 第一章 緒論..................................11 1-1 前言.....................................11 1-2 研究目的...................................11 第二章 前人研究與基礎理論.......................12 2-1變阻器.........................................12 2-1.1 變阻器之功能與應用..............................12 2-1.2 變阻器性質與機構...............................13 2-1.2.1 雙重蕭基特能障(Double Schottky barrier) .......13 2-1.2.2 非歐姆特性(non-Ohmic characteristic)..........14 2-2 添加劑對鐵氧磁體變阻性質影響............................18 2-3阻抗分析法............................................19 2-3.1 阻抗分佈係數(distribution coefficient,α)..........27 2-4電模數分析法......................................28 2-5障壁層電容器(Barrier layer capacitor)...................30 2-6積層電感..............................................32 2-6.1電感之特性...........................................32 2-6.2積層電感之構造.......................................32 2-7 鎳銅鋅鐵氧磁體材料.....................................35 2-7.1尖晶石鐵氧磁體結構...................................35 2-7.2鋅鐵氧磁體...........................................38 2-7.3 NiCuZn鐵氧磁體之成分比例影響特性.....................40 2-7.4 添加劑降低NiCuZn鐵氧磁體之燒結溫度...................43 第三章實驗方法及步驟.......................................44 3-1 實驗藥品............................................44 3-2 實驗流程...........................................45 3-2.1粉末製備..................................46 3-2.2試片製備..................................46 3.3材料特性分析.........................................46 3-3.1 相鑑定...................................46 3-3.2 燒結熱收縮膨脹曲線分析.....................47 3-3.3熱行為分析..................................47 3-3.4 顯微結構分析................................47 3-3.5 變阻特性分析...................................47 3-3.6 阻抗分析.................................48 3-3.7 TEM顯微結構觀察.........................48 3-3.8 磁性量測...................................49 3-3.9 磁滯曲線分析...............................49 第四章 結果與討論..........................................50 4-1 添加氧化鉍與氧化鈮對鐵氧磁體變阻性質之影響.................50 4-1.1 粉末之結晶相分析.....................................50 4-1.2燒結後試片之結晶相分析.................................50 4-1.3 顯微結構............................................51 4-1.4變阻性質..............................................54 4-1.5 阻抗分析...........................................55 4-1.6 磁性質............................................58 4-2改變降溫速率與增加熱處理對鐵氧磁體變阻性質之影響...........60 4-2.1 樣品之熱收縮行為....................................60 4-2.2熱重分析............................................61 4-2.3 燒結後試片之結晶相分析...............................62 4-2.4顯微結構.............................................63 4-2.5變阻性質..............................................67 4-2.6阻抗分析..........................................68 4-2.7電模數分析........................................73 4-2.8磁性質..............................................74 第五章結論...............................................77 第六章參考文獻...........................................78

    1. Ferdy Mayer, “Non-Linear Conduction and Low-Pass Effects: Their Combined Use in New System Oriented EMC-Suppression Techniques”, Proceedings of the 1993 Electromagnetic Compatibility, IEEE International Symposium, Dallas, Texas, August 9-13, pp. 348-351 (1993).
    2. 國立編譯館、邱碧秀,「電子陶瓷材料」,徐氏基金會出版。197-239(1988)
    3. 吳朗,「電子陶瓷─半導體」,全欣資訊。162-213(1994)
    4. 高志鈞,「氧化鋅變阻器的製作與應用」,材料與社會47-55 . (1990)
    5. A. J. Moulson, and J. M. Herbert, “Electroceramics Materials, Properties, Applications”, London , Chapman and Hall ,New York(1990) p131.
    6. S. Y. Chun, N. Wakiya, h. Funakubo, K. Shinozaki, and N. Mizuyani,“Phase Diagram and Microstructure in the ZnO-Pr2O3 System”, J.Am. Ceram.Soc 80, 995-998 (1997).
    7. T. K. Gupta, ”Application of Zinc Oxide Varistors”, J. Am. Ceram. Soc. 73, 7, 1817-1840 (1990).
    8. G. E. Pike, ”Electronic of ZnOvaristor : A New Model”, in ”Grain boundaries in Semiconductor ” , ed H. J. Leamy, G. E. Pike and C. H. Seager North Holland Publishing Co. New York. 369-377 (1982).
    9.D. R. Clarke, ”Varistor Ceramics”, J. Am. Ceram. Soc., 82, 3, 485-502. (1999).
    10. N. Ohashi, Y. Terada, T. Ohgaki, S. Tanaka, T. Tsurumi, O. Fukunaga, H. Haneda, and J. Tanaka, ”Synthesis of ZnOBicrystal Doped with Co or Mn and Their Electrical Properties,” Jpn. J. Appl. Phys, 38 [9A] 5028-5032 (1999).
    11.A. B. Alles, and V. L. Burdick, “The Effect of Liquid-Phase Sintering on the Properties of Pr6O11-Based ZnOVaristors,” J. Appl. Phys., 70 [11] 6883-6890 (1991).
    12.F. Stucki, and F. Greuter, “Key Role of Oxygen at Zinc Oxide Varistor Grain Boundaries,” Appl. Phys. Lett., 57 [5] 446-448 (1990).
    13.V.T. Zaspalisa,, E. Antoniadis, E. Papazoglou, V. Tsakaloudi,L. Nalbandian, C.A. Sikalidis,“The effect of Nb2O5 dopant on the structural and magneticproperties of MnZn-ferrites,”J. Magnetism and Magnetic Materials 250 (2002) 98–109
    14.黃忠良,磁性陶瓷,復漢出版社,1988
    15.柯文雄,晶片型電子陶瓷材料及元件技術,工業技術研究院,1993
    16.M. D. Kingery, D.R. Uhlmann, et al, “Introduction to ceramics,” 2nd Edition, John Wiley &Sons, New York, (1976)
    17.TDK,SMD Pulse Transformer for Ethernet Applications ALT4532 Series,Tech Journal,2011
    18.金重勳,磁性技術手冊,中華民國磁性技術協會,2002
    19.K. Sun, Z. W. Lan, Z. Yu, L. Z. Li, J. M. Huang and X. N. Zhao, “Grain Growth, Densification and Magnetic Properties of NiZn Ferrites with Bi2O3 Additive,” Journal of Physics D-Applied Physics, 41 [23] 235002 (2008).
    20.劉向春,ZnO-TiO2系介電陶瓷/NiCuZn鐵氧磁體疊層低溫共燒兼容特性研究,西北工業大學,博士論文,2006
    21.Alex Goldman, Modern ferrite technology, Spring, NY (2006)
    22.C. Guillaund, J. Phys. Rad., 12 239, (1951).
    23. Raul Valenzuela, Magnetic ceramics, Cambridge University Press, NY (1994)
    24.陳皇均,陶瓷材料概論下,曉園出版社,1992
    25.劉向春,ZnO-TiO2系介電陶瓷/NiZnCu鐵氧磁體疊層低溫共燒兼容特性研究,西北大學,博士論文,2006
    26. J. H. Nam, H. H. Jung, J. Y. Shin, et al,“The effect of Cu substitution on the electrical and magnetic properties of NiZn ferries,”IEEE. Trans. Magn., 31 [6] 3985-3987 (1995).
    27.J. Murbe, J. Topfer,“Ni-Cu-Zn Ferrites for low temperature firing Effects of powder morphology and Bi2O3 addition on microstructure and permeability,”J. Electroceram., 16 199-205 (2006).
    28.Macdonald. J. Ross. “Impedance spectroscopy.” John Wiley & Sons(2005)
    29.D.C. Sinclair and A.R. West, "Impedance and modulus spectroscopy of
    semiconducting BaTiO3 showing positive temperature of resistance.", J. Appl.
    Phys., 66 (8) pp 3850-3856 (1989)
    30.R. Valenzuela, and M. Vallet-Regi, “Grain boundary impedance of doped Mn-Zn ferrites,” J. Mater.Res., 14 [3] 861-865 (1999).
    31. L G. Van Uiter "Dielectric Properties of and Conductivity in Ferrites," Proceedings of the IRE 44 [10] 1294-1303 (1956)
    32.John T. S. Irvine, Alfonso Huanosta,t Raul Valenzuela,t and Anthony R, West,“Electrical Properties of Polycrystalline Nickel Zinc Ferrites,”J. Am. Ceram. Soc., 73 [3]7 29-32 (1990)
    33.A. Barba, C. Clausell, J. C. Jarque, M. Monzó, “ZnO and CuO crystal precipitation in sintering Cu-doped Ni-Zn ferrites. I. Influence of dry relative density and cooling rate,” J. Europ.Ceram.Soc., 31 [12] 2119-2128 (2011).
    34.K. Kamiya, T.Yoko, S.Sakka,“Migration of Cu+ ions in Cu2O-Al2O3-SiO2 glass on heating air,” J.Non-Cryst.solids, 80 [1-3] 405-411 (1986).
    35.F. KENFACK, H. LANGBEIN,“Spinel ferrites of the quaternary system Cu-Ni-Fe-O:Synthesis and characterization,” J MATER SCI 41 (2006) 3683–3693
    36.A. Maıˆtre, M. Franc¸ois, and J.C. Gachon,“Experimental Study of the
    Bi2O3-Fe2O3 Pseudo-Binary System,” JPEDAV (2004) 25:59-67
    37. A. J. Moulson, J. M. Herbert,”Electroceramics Materials, properties, applications,” Chapman and Hall, New York, p256-262(1990)
    38.N.Rezlescu, E.Rezlescu, P.D.Popa and L.Rezlescu,”On the Time Variation of theElectrical Conductivity in Some SpinelMagnetic Ceramics,” Electrets, 1999.ISE 10.Proc
    39. 呂秉軍,離子擴散對鎳銅鋅鐵氧磁體與硼系玻璃陶瓷共燒的影響,成功大學,碩士論文,2012

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE