| 研究生: |
翁啟能 Wang, Chi-neng |
|---|---|
| 論文名稱: |
交流電滲流在微管道之研究:傳輸與混合 A Study of AC Electroosmotic Flow in the Microchannel : Pumping and Mixing |
| 指導教授: |
楊瑞珍
Yang, Ruey-jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 電容充電 、非均勻極化 、法拉第充電 |
| 外文關鍵詞: | Asymmetric polarization, capacitive charging, Faradaic charging |
| 相關次數: | 點閱:59 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以實驗方式進行電容(Chapacitive charging)、法拉第(Faradaic charging)與非均勻極化(Asymmetric polarization),三種交流電滲充電機制針對流體傳輸與混合之探討,所探討問題主要分成二部分:
第一部份為以對稱多T電極進行流體傳輸之探討。電容與法拉第充電機制的流場方向切換頻率範圍約在350~400Hz之間,並量測電極表面的流場速度分佈,佐以交流電滲理論探討說明。法拉第充電機制驅動的流場速度大於電容充電機制,所以使用法拉第充電機制驅動流體傳輸。流體傳輸速度受到渦漩切線速度影響,在相鄰電極部位的速度 ,而在∩型電極部位的流速度 。
第二部份為以對稱與非對稱多T電極進行流體混合之探討。法拉第充電機制的渦漩流場結構強度大於電容充電機制,其混合效果也比電容充電機制好。然而,法拉第充電機制的操作條件範圍不易控制,要避免電極損耗。由實驗結果得到,非均勻極化充電機制的漩渦流場結構相較於電容與法拉第能更有效的產生混合作用。最後,以非均勻極化方式持續趨動60秒進行對稱與非對稱多T電極結構混合實驗,混合效率值由對稱多T的56.49%提高到非對稱多T的71.77%。
In the study, we investigated three different mechanism of AC electroosmotic flow (EOF), namely, capacitive charging, Faradaic charging, and asymmetric polarization in pumping and mixing, respectively. Two major topics were studied:
First, we studied the mechanism of flow pumping via using AC EOF with symmetric mutli-T type electrode. We investigated the phenomena of AC EOF via recording the particle velocity on the surface of the electrode. The velocity of the flow field induced by the Faradaic charging is stronger than that velocity induced by the capacitive charging. The measured pumping was high even up to .
Second, we studied the mechanism of mixing via AC EOF with symmetric and asymmetric mutli-T type electrodes. The vortices induced via the Faradaic charging are stronger than those induced via capacitive charging. Nevertheless, the frequency of the Faradaic charging must be carefully controlled to avoid damaging electrodes. Experimental results showed that the vortices induced by the asymmetric polarization are stronger than the other two types. The mixing index was increased from 56.49% to 71.77% after an elapsed time of 60 sec.
1.Gravesen, P., Branebjerg O. J., Jensen, S., “Microfluidic- a review”, J. Micromeach. Microeng., 3, 168-182, 1993.
2.Harrison, D. J., Berg, A., “Micro Total Analysis System’98”, Kluwer Academic Publishers, Netherland 1998.
3.Manzs, A., Graber, N., Widmer, H. M., Sens. Actuators B1, 244-248, 1990.
4.Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Flow Systems”, Microprocesses and Nanotechnology’99, 72-73, 1999.
5.Harrison D. J., Fluri, K., Seiler, K., Fan, Z., Effenhauser, C. S., Manz, A., “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analsis System in a Chip” , Science, 261, 895, 1993.
6.Brown, A. B. D., Smith, C. G., Rennie, A. R., Phy. Rev, E63,016305, 2001.
7.Lin, C. H., Lee, G. B., Lin, Y. H., Chang, G. L., J. “A Fastprototypingfor Fabrication of Microfluidic Systems on Soda-limeglass”, J. Micromeach. Microeng. 11, 726-732, 2001.
8.Chang, H. C., “Electro-kinetic : a Viable Micro-fluidic Platform for Miniature Diagnostic Kits”, J. Chem. Eng., 84, 1-15, 2006.
9.Zeng, S. L., Chen, C. H., Mikkelsen, J. C., Santiago, J. G., “Fabrication and Characterization of electroosmotic micropumps”, Sen. Actuators B, 79, 107-114, 2001.
10.Minerick, A. R., Ostafin, A. E., Chang, H. C., “Electrokinetic Transport of Red Blood Cells in Microcapillaries”, Electrophoresis, 23, 2165-2173, 2002.
11.Ramos, A., Morgan, H., Green, N. G., “Pumping of Liquids with Traveling-wave Electroosmosis”, J. Appl. Phys., 97, 084906, 2005.
12.Brown, A. B. D., Smith C. G., Rennie, A. R., “Pumping of Water with AC Electric Fields Applied to Asymmetric Pairs of Microelectrodes”, Phys. Rev. E, 63, 016305 , 2001.
13.Ramos, A., Gonzalez, A., Castellanos, A., Green, N. G., Morgan, H., “Pumping of Liquid with AC Voltages Applied to Asymmetric Pairs of Microelectrodes”, Phys. Rev. E, 67, 056302, 2003.
14.Studer, V., Pepin, A., Chen, Y., Ajdari, A., “Fabrication of Microfluidic Devices for AC Electrokinetic Fluid Pumping”, J. Microelectron. Eng., 61, 915-920, 2002.
15.Mpholo, M., Smith, C. G., Brown, A. B. D., “Low Voltage Plug Flow Pumping Using Anisotropic Electrode Arrays”, Sen. Actuators B, 92 262-268, 2003.
16Sasaki, N., Kitamori T., and Kim, H. B., “AC Electroosmotic Micromixer for Chemical Processing in A Microchannel”, Lap Chip, 6, 550-554, 2006.
17.Huang, S. H., Wang, S. K., Khoo, H. S., Tseng, F. G., “AC Eectrosmotic Generated in-Plane Microvortices for Stationary or Continuous Fluid Mixing”, Sen. Actuators B, 125, 326-336, 2007.
18.Lastochkin, D., Zhou, R., Wang, P., Ben, Y., Chang, H. C., “Electrokinetic Micropump and Micromixer Design Based on AC Faradaic Polarization”, J. Appl. Phys., 96, 1730, 2004.
19.Wu, J. T., Du, J. R., Juang, Y. J., Wei, H. H., “Rectified Elongational Streaming Due to Asymmetric Electro-osmosis Induced by AC Polarization”, Appl. Phys. Letter., 90, 134103, 2007.
20.Urbanski, J. P., Thorsen, T., Levitan, J. A., Bazant, M. Z., “Fast AC Electro-osmotic Micropumping with Nonplanar Electrodes,” Appl. Phys. Letter, 89, 143598, 2006.
21.Russel, W. B., Saville, D. A., Schowalter, W. R., “Colloid Science: Principles and Applied Mathematics”, Cambrifge University Press, Cambridge, 1989.
22.Tiselius, A., “A New Apparatus for Electrokinetic Analysis of Colloidal Mixtures”, Transactions of the Faraday Society Articles, 33, 524, 1937.
23.Russel, W. B., Saville, D. A.,Schowalter, W. R., “Colloidal Dispersion, New York”, 1989.
24.Yang, R. J., Fu, L. M., Lin Y. C., “Electroosmotic Entry Flow in Microchannels”, J. Colloid Interf. Sci., 239, 98-105, 2001.
25.Yang, R. J., Fu, L. M., Hwang, C. C, “Electroosmotic Entry Flow in Microchannels”, J. Colloid and Interf. Sci., 244, 173-179, 2001.
26.Patankar, N. A., Hu, H. H., “Numerical Simulation of Electroosmotic Flow ”, Anal. Chem., 70, 1870-1881. 1998.
27. Ben, Y., Lastochkin, D., Chang, H. C., “Faradaic AC Micro-Pumps and Mixers with Orthogonal Electrodes”, ASME, 17-19, 2004.
28. Wu, J., “AC Electro-osmotic Micropump by Asymmetric Electrode Polarization”, J. Appl. Phys., 103, 024907, 2008.
29.Ajdari, A., “Electrokinetic ‘Ratchet’Pumps for microfluidics”, Appl.Phys. A, 75, 271-274, 2002.
30.Kuo, C. T., Liu, C. H., “A Novel Microfluidic Driver via AC Electrokinetics”, Lap Chip, 8, 725-733, 2008.
31.Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., “Passive Mixing in a Three-Dimensional Serpentine Microchannel”, J. Microelectromechs. S., 9, 190, 2000.
32.Xia, H. M., Wan, S. Y. M., Shu, C, Chew, Y. T., “Chaotic Micromixers Using Two-layer Crossing Channels to Exhibit Fast Mixing at Low Reynolds Numbers”, Lab Chip, 5, 748–755, 2005.
33.Biddiss, E., Erickson, D., Li, D., “Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows”, Anal. Chem., 76, 3208, 2004.