| 研究生: |
鄭力誠 Jheng, Li-Cheng |
|---|---|
| 論文名稱: |
燃料電池用含苯咪唑官能基之高分子電解質薄膜 Polymer Electrolyte Membranes Containing Benzimidazole Moiety for Fuel Cells |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 聚苯咪唑 、燃料電池 、質子交換膜 、陰離子交換膜 、奈米複合材料 、孔洞 、非對稱性博膜 、(苯)咪唑嗡 |
| 外文關鍵詞: | polybenzimidazole, fuel cell, proton exchange membrane, anion exchange membrane, nanocomposite, porous, asymmetric membrane, (benz)imidazolium |
| 相關次數: | 點閱:111 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫型質子交換膜燃料電池與陰離子交換膜燃料電池,由於這兩類新型高分子電解質薄膜燃料電池有潛力解決關於電極反應效率不佳、貴重白金觸媒使用以及水管理等問題,因此近期的研究發展相當受到期待。基於(苯)咪唑官能基特殊的可酸可鹼的兩性特徵,藉由得到質子或脫去質子(質子化或去質子化)過程可轉化成為帶正價離子基或帶負價離子基,即可發展出具陽離子(質子)傳導基或者具陰離子傳導基之兩類電解質薄膜。因此,本論文聚焦於研究發展數種新型含苯咪唑官能基之燃料電池用高分子電解質薄膜,其中包含磷酸摻混之奈米複合材料薄膜、磷酸摻混之非對稱性孔洞材料薄膜、以及帶有(苯)咪唑官能基之四級胺聚苯咪唑薄膜。前兩者應用於高溫型質子交換膜燃料電池,後者應用於陰離子交換膜燃料電池。
本論文的第一部份,研究用於高溫型質子交換膜燃料電池的含有改質奈米碳管之聚苯咪唑奈米複合材料薄膜。改質奈米碳管的導入,可同時提升電解質薄膜之機械性質與燃料電池之功率。藉由非共價鍵結改質與共價鍵結改質的兩種方式來改質多壁奈米碳管,分別製備出磺酸化奈米碳管(MWNT-poly(NaSS))與咪唑化奈米碳管(MWNT-imidazole)。本研究透過紅外線光譜、X光光電子能譜、拉曼光譜與熱重分析等對改質奈米碳管進行鑑定。相較於非改質奈米碳管與磺酸化奈米碳管(MWNT-poly(NaSS)),咪唑化奈米碳管(MWNT-imidazole)對於聚苯咪唑有較好的相容性以及機械性質強化效果。含磺酸化奈米碳管之聚苯咪唑複材薄膜與含咪唑化奈米碳管之聚苯咪唑複材薄膜,在兩者之飽和磷酸含量情況下,並在160°C無水環境下所測得之質子傳導率皆高於純聚苯咪唑薄膜,分別為5.1 × 10-2 與 4.3 × 10-2 S/cm。並且,這兩類改質奈米碳管之聚苯咪唑複材薄膜在170 °C無水環境下所測得的燃料電池功率亦相對高於純聚苯咪唑薄膜。
本論文的第二部分,研究用於高溫型質子交換膜燃料電池之非對稱性孔洞聚苯咪唑薄膜。該薄膜透過軟模法成功地製備,軟模法採用一種特殊的離子液體 ([EMIM][TFSI]) 來做為軟模版或發泡劑。非對稱性孔洞聚苯咪唑薄膜,透過掃描式電子顯微鏡觀察形貌,發現其非對稱孔洞結構包含了一層緻密層與一層孔洞層。在其成膜過程中,發展非對稱結構的主要驅動因素推測來自於高分子主體與發泡劑間的密度差異。對於磷酸摻混之非對稱性孔洞聚苯咪唑薄膜,具高孔隙率之薄膜試片顯出相當高的磷酸含量與質子傳導率,磷酸摻雜程度可達到23.6,以及質子導電率可達到6.26 × 10-2 S/cm。另外,研究探討發現非對稱性孔洞聚苯咪唑薄膜,交聯處理對於提升薄膜其機械強度與氧裂解安定性有所幫助。本研究,我們製備出由含有非對稱性孔洞聚苯咪唑薄膜所構成的膜電極,並在高溫無水環境下的實際驗證燃料電池的功率表現。
論文的第三部分,合成一系列帶有(苯)咪唑嗡官能基之四級胺化聚苯咪唑薄膜,應用於陰離子交換膜燃料電池。高分子材料結構藉氫譜核磁共振、紅外線光譜與能量分散式元素分析等完成鑑定。同時,四級胺化聚苯咪唑薄膜之咪唑嗡官能化程度、離子交換能力、吸水率、膨脹率、水合數目與離子傳導率等各項性質皆進行量測分析與探討。實驗結果顯示,所合成製備的四級胺化聚苯咪唑薄膜,其離子交換能力落在0.96~1.49 mmol/g範圍之間,在80˚C所量測的最佳離子傳導率達2.72 × 10-2 S/cm。此外,四級胺化聚苯咪唑薄膜的熱安定性、機械性質與鹼安定性亦進行評估探討。實驗結果顯示,四級胺化聚苯咪唑薄膜具有可接受的熱安定性與機械強度,不過(苯)咪唑嗡官能基之鹼安定性仍須進一步改善。
This thesis focused on developing and studying polymer electrolyte membranes containing benzimidazole moiety for fuel cells. Benzimidazole is amphoteric and exists two equivalent tautomeric forms, which can be acted as either proton exchange site or anion exchange site depending on the transfer of a proton (deprotonation and protonation). Three novel polybenzimidazole (PBI) based polymer electrolyte membranes have been developed, including phosphoric acid doped MWNT/PBI composite membranes for high temperature proton exchange membrane fuel cell (HT-PEMFC), phosphoric acid doped asymmetric PBI membranes for HT-PEMFC, and quaternized PBI membranes with imidazolium and benzimidazolium functional groups for anion exchange membrane fuel cell (AEMFC). HT-PEMFC and AEMFC are the two promising variants of the polymer electrolyte membrane fuel cell, which have possibilities to meet the challenges associated with electrode reaction kinetics, use of expensive Pt catalyst, and water management.
Firstly, composite membranes used for proton exchange membrane fuel cells comprising of PBI and carbon nanotubes with certain functional groups were studied. They could enhance both the mechanical property and fuel cell performance at the same time. Two kinds of composite membranes including sodium poly(4-styrene sulfonate) functionalized multiwalled carbon nanotubes (MWNT-poly(NaSS))/ PBI and imidazole functionalized multiwalled carbon nanotubes (MWNT-imidazole)/PBI composite membranes were prepared. The functionalization of carbon nanotubes involving non-covalent modification and covalent modification were confirmed by FITR, XPS, Raman spectroscopy, and TGA. Compared to unmodified MWNTs and MWNT-poly(NaSS), MWNT-imidazole provided more significant mechanical reinforcement due to its better compatibility with PBI. For MWNT-poly(NaSS)/PBI and MWNT-imidazole/PBI composite membranes at their saturated doping levels, the proton conductivities were up to 5.1 × 10-2 and 4.3 × 10-2 S/cm at 160°C under anhydrous condition respectively, which were slightly higher than pristine PBI (2.8 × 10-2 S/cm). Also, MWNT-poly(NaSS)/PBI and MWNT-imidazole/PBI composite membranes showed relatively improved fuel cell performance at 170 °C compared to pristine PBI.
Secondly, a novel asymmetric PBI membrane used for HT-PEMFC has been successfully fabricated by a soft-template method using ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) as porogen. The asymmetric PBI membrane typically exhibits a double layer structure comprising a dense layer and a porous layer with a distinguishable boundary. The morphology and asymmetry of the porous structure has been characterized by SEM micrographs. The density difference between the polymer matrix and the porogen can be considered as the driving force for developing the asymmetrical structure. The phosphoric acid-doped asymmetric PBI with a high porosity exhibited considerably enhanced doping level and proton conductivity. For example, a doping level of up to 23.6 and a proton conductivity as high as 6.26 × 10-2 S/cm were achieved. Moreover, the crosslinking modification of asymmetric PBIs had facilitating effects on mechanical strength and oxidative stability, which were investigated. We have also demonstrated fuel cell performance of membrane electrode assembly (MEA) based on the asymmetric PBI at elevated temperatures under anhydrous conditions in the present work.
Thirdly, a new series of quaternized PBIs having imidazolium moieties in the main-chain and/or in the side group were synthesized for use as anion exchange membrane (AEM) for fuel cells. The polymer structures were characterized by 1H NMR, FTIR, and EDX analyses. The degree of imidazolium functionalization (DIF) of the quaternized PBI was also determined. The properties required for AEM, such as ion exchange capacity (IEC), water uptake, swelling ratio, hydrated number, and ionic conductivity were measured. The IECs of the quaternized PBIs were in the range of 0.96~1.49 mmol/g. The highest ionic conductivity of 2.72 × 10-2 S/cm was achieved at 80˚C. Besides, the thermal stability, mechanical properties, and alkaline stability of the quaternized PBI membranes were investigated. The results revealed that the thermal stability and mechanical properties of the membranes were acceptable, but the alkaline stability of the (benz)imidazolium moieties needs to be improved.
[1] http://www.fuelcelltoday.com/
[2] Fuel Cell Technology Handbook, CRC Press LLC, 2003.
[3] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied Energy, 88 (2011) 981-1007.
[4] Y.-J. Wang, J. Qiao, R. Baker, J. Zhang, Alkaline polymer electrolyte membranes for fuel cell applications, Chemical Society Reviews, 42 (2013) 5768-5787.
[5] D. Garraín, Polymer Electrolyte Membrane Fuel Cells (PEMFC) in Automotive Applications: Environmental Relevance of the Manufacturing Stage, Smart Grid and Renewable Energy, 02 (2011) 68-74.
[6] Y. Shao, G. Yin, Z. Wang, Y. Gao, Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, Journal of Power Sources, 167 (2007) 235-242.
[7] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56 (2005) 9-35.
[8] J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D.P. Wilkinson, Z.S. Liu, S. Holdcroft, High temperature PEM fuel cells, Journal of Power Sources, 160 (2006) 872-891.
[9] P. Waszczuk, G.Q. Lu, A. Wieckowski, C. Lu, C. Rice, R.I. Masel, UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis, Electrochimica Acta, 47 (2002) 3637-3652.
[10] Q. Li, R. He, J.A. Gao, J.O. Jensen, N.J. Bjerrum, The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C, Journal of The Electrochemical Society, 150 (2003) A1599-A1605.
[11] C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly, Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, Journal of Power Sources, 103 (2001) 1-9.
[12] J.S. Yi, T.V. Nguyen, An Along‐the‐Channel Model for Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society, 145 (1998) 1149-1159.
[13] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chemistry of Materials, 15 (2003) 4896-4915.
[14] W.H.J. Hogarth, J.C. Diniz da Costa, G.Q. Lu, Solid acid membranes for high temperature proton exchange membrane fuel cells, Journal of Power Sources, 142 (2005) 223-237.
[15] H. Zhang, P.K. Shen, Recent development of polymer electrolyte membranes for fuel cells, Chem Rev, 112 (2012) 2780-2832.
[16] J.R. Varcoe, R.C.T. Slade, G.L. Wright, Y. Chen, Steady-State dc and Impedance Investigations of H2/O2 Alkaline Membrane Fuel Cells with Commercial Pt/C, Ag/C, and Au/C Cathodes, The Journal of Physical Chemistry B, 110 (2006) 21041-21049.
[17] J.R. Varcoe, R.C.T. Slade, E.L.H. Yee, S.D. Poynton, D.J. Driscoll, Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes, Journal of Power Sources, 173 (2007) 194-199.
[18] X. Kong, K. Wadhwa, J.G. Verkade, K. Schmidt-Rohr, Determination of the Structure of a Novel Anion Exchange Fuel Cell Membrane by Solid-State Nuclear Magnetic Resonance Spectroscopy, Macromolecules, 42 (2009) 1659-1664.
[19] R.T. Slade, J. Kizewski, S. Poynton, R. Zeng, J. Varcoe, Alkaline Membrane Fuel Cells, in: K.-D. Kreuer (Ed.) Fuel Cells, Springer New York, 2013, pp. 9-29.
[20] D. Tang, J. Pan, S. Lu, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress, Science China Chemistry, 53 (2010) 357-364.
[21] Q. Li, J.O. Jensen, R.F. Savinell, N.J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Progress in Polymer Science, 34 (2009) 449-477.
[22] T.H. Kim, T.W. Lim, J.C. Lee, High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting, Journal of Power Sources, 172 (2007) 172-179.
[23] L.A. Diaz, G.C. Abuin, H.R. Corti, Water and phosphoric acid uptake of poly [2,5-benzimidazole] (ABPBI) membranes prepared by low and high temperature casting, Journal of Power Sources, 188 (2009) 45-50.
[24] S.W. Chuang, S.L.C. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 4508-4513.
[25] G. Qian, B.C. Benicewicz, Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells, Journal of Polymer Science Part A: Polymer Chemistry, 47 (2009) 4064-4073.
[26] T.H. Kim, S.K. Kim, T.W. Lim, J.C. Lee, Synthesis and properties of poly(aryl ether benzimidazole) copolymers for high-temperature fuel cell membranes, Journal of Membrane Science, 323 (2008) 362-370.
[27] G. Qian, D.W. Smith Jr, B.C. Benicewicz, Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells, Polymer, 50 (2009) 3911-3916.
[28] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, A novel titanium PBI-based composite membrane for high temperature PEMFCs, Journal of Membrane Science, 369 (2011) 105-111.
[29] D. Plackett, A. Siu, Q. Li, C. Pan, J.O. Jensen, S.F. Nielsen, A.A. Permyakova, N.J. Bjerrum, High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells, Journal of Membrane Science, 383 (2011) 78-87.
[30] V. Kurdakova, E. Quartarone, P. Mustarelli, A. Magistris, E. Caponetti, M.L. Saladino, PBI-based composite membranes for polymer fuel cells, Journal of Power Sources, 195 (2010) 7765-7769.
[31] R. He, Q. Li, G. Xiao, N.J. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science, 226 (2003) 169-184.
[32] P. Staiti, M. Minutoli, S. Hocevar, Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application, Journal of Power Sources, 90 (2000) 231-235.
[33] P. Staiti, Proton conductive membranes based on silicotungstic acid/silica and polybenzimidazole, Materials Letters, 47 (2001) 241-246.
[34] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, Promising TiOSO4 Composite Polybenzimidazole-Based Membranes for High Temperature PEMFCs, ChemSusChem, 4 (2011) 1489-1497.
[35] S. Di, L. Yan, S. Han, B. Yue, Q. Feng, L. Xie, J. Chen, D. Zhang, C. Sun, Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials, Journal of Power Sources, 211 (2012) 161-168.
[36] Suryani, Y.L. Liu, Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes, Journal of Membrane Science, 332 (2009) 121-128.
[37] L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, B.C. Benicewicz, High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol−Gel Process, Chemistry of Materials, 17 (2005) 5328-5333.
[38] G. Qian, D.W. Smith, B.C. Benicewicz, Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells, Polymer, 50 (2009) 3911-3916.
[39] S. Yu, H. Zhang, L. Xiao, E.W. Choe, B.C. Benicewicz, Synthesis of Poly (2,2′-(1,4-phenylene) 5,5′-bibenzimidazole) (para-PBI) and Phosphoric Acid Doped Membrane for Fuel Cells, Fuel Cells, 9 (2009) 318-324.
[40] D. Mecerreyes, H. Grande, O. Miguel, E. Ochoteco, R. Marcilla, I. Cantero, Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes, Chemistry of Materials, 16 (2004) 604-607.
[41] J. Weber, M. Antonietti, A. Thomas, Mesoporous Poly(benzimidazole) Networks via Solvent Mediated Templating of Hard Spheres, Macromolecules, 40 (2007) 1299-1304.
[42] J. Weber, K.D. Kreuer, J. Maier, A. Thomas, Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)‐Phosphoric Acid Adducts, Advanced Materials, 20 (2008) 2595-2598.
[43] G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Progress in Polymer Science, 36 (2011) 1521-1557.
[44] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer, 14 (1973) 589.
[45] G.B. Appetecchi, F. Alessandrini, R.G. Duan, A. Arzu, S. Passerini, Electrochemical testing of industrially produced PEO-based polymer electrolytes, Journal of Power Sources, 101 (2001) 42-46.
[46] C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Materials Letters, 57 (2002) 873-881.
[47] H. Hou, G. Sun, R. He, Z. Wu, B. Sun, Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell, Journal of Power Sources, 182 (2008) 95-99.
[48] M. Guo, J. Fang, H. Xu, W. Li, X. Lu, C. Lan, K. Li, Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells, Journal of Membrane Science, 362 (2010) 97-104.
[49] B. Xing, O. Savadogo, Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI), Electrochemistry Communications, 2 (2000) 697-702.
[50] R.H. He, Q.F. Li, G. Xiao, N.J. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science, 226 (2003) 169-184.
[51] S.Y. Oh, T. Yoshida, G. Kawamura, H. Muto, M. Sakai, A. Matsuda, Inorganic-organic composite electrolytes consisting of polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells, Journal of Materials Chemistry, 20 (2010) 6359-6366.
[52] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, A novel titanium PBI-based composite membrane for high temperature PEMFCs, Journal of Membrane Science, 369 (2011) 105-111.
[53] S.W. Chuang, S.L.C. Hsu, C.L. Hsu, Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications, Journal of Power Sources, 168 (2007) 172-177.
[54] S. Ghosh, S. Maity, T. Jana, Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell, Journal of Materials Chemistry, 21 (2011) 14897-14906.
[55] C. Xu, Y. Cao, R. Kumar, X. Wu, X. Wang, K. Scott, A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells, Journal of Materials Chemistry, 21 (2011) 11359-11364.
[56] R. Kannan, M. Parthasarathy, S.U. Maraveedu, S. Kurungot, V.K. Pillai, Domain Size Manipulation of Perflouorinated Polymer Electrolytes by Sulfonic Acid-Functionalized MWCNTs To Enhance Fuel Cell Performance, Langmuir, 25 (2009) 8299-8305.
[57] R. Kannan, H.N. Kagalwala, H.D. Chaudhari, U.K. Kharul, S. Kurungot, V.K. Pillai, Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells, Journal of Materials Chemistry, 21 (2011) 7223.
[58] E.C. Vermisoglou, V. Georgakilas, E. Kouvelos, G. Pilatos, K. Viras, G. Romanos, N.K. Kanellopoulos, Sorption properties of modified single-walled carbon nanotubes, Microporous and Mesoporous Materials, 99 (2007) 98-105.
[59] Y.L. Liu, W.H. Chen, Y.H. Chang, Preparation and properties of chitosan/carbon nanotube nanocomposites using poly(styrene sulfonic acid)-modified CNTs, Carbohydrate Polymers, 76 (2009) 232-238.
[60] M.J. Park, J.K. Lee, B.S. Lee, Y.W. Lee, I.S. Choi, S.G. Lee, Covalent Modification of Multiwalled Carbon Nanotubes with Imidazolium-Based Ionic Liquids: Effect of Anions on Solubility, Chemistry of Materials, 18 (2006) 1546-1551.
[61] J.C. Yang, M.J. Jablonsky, J.W. Mays, NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers, Polymer, 43 (2002) 5125-5132.
[62] H. Shao, Z. Shi, J. Fang, J. Yin, One pot synthesis of multiwalled carbon nanotubes reinforced polybenzimidazole hybrids: Preparation, characterization and properties, Polymer, 50 (2009) 5987-5995.
[63] Q. Zhang, J. Li, X. Zhao, D. Chen, Preparation and characterization of alkylated carbon nanotube/polyimide nanocomposites, Polymer International, 58 (2009) 557-563.
[64] W. Qian, Y. Shang, M. Fang, S. Wang, X. Xie, J. Wang, W. Wang, J. Du, Y. Wang, Z. Mao, Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications, International Journal of Hydrogen Energy, 37 (2012) 12919-12924.
[65] S. Angioni, P.P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, A. Magistris, Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs, International Journal of Hydrogen Energy, 36 (2011) 7174-7182.
[66] Q.F. Li, H.C. Rudbeck, A. Chromik, J.O. Jensen, C. Pan, T. Steenberg, M. Calverley, N.J. Bjerrum, J. Kerres, Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes, Journal of Membrane Science, 347 (2010) 260-270.
[67] F.J. Pinar, P. Canizares, M.A. Rodrigo, D. Ubeda, J. Lobato, Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount, RSC Advances, 2 (2012) 1547-1556.
[68] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes, Journal of Power Sources, 196 (2011) 8265-8271.
[69] J. Lobato, P. Cañizares, M.A. Rodrigo, D. Úbeda, F.J. Pinar, J.J. Linares, Optimisation of the Microporous Layer for a Polybenzimidazole-Based High Temperature PEMFC – Effect of Carbon Content, Fuel Cells, 10 (2010) 770-777.
[70] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, D. Úbeda, F.J. Pinar, Study of the Catalytic Layer in Polybenzimidazole-based High Temperature PEMFC: Effect of Platinum Content on the Carbon Support, Fuel Cells, 10 (2010) 312-319.
[71] Q. Li, Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells, Solid State Ionics, 168 (2004) 177-185.
[72] C.H. Shen, L.C. Jheng, S.L.C. Hsu, J. Tse-Wei Wang, Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells, Journal of Materials Chemistry, 21 (2011) 15660.
[73] S. Wang, C. Zhao, W. Ma, G. Zhang, Z. Liu, J. Ni, M. Li, N. Zhang, H. Na, Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells, Journal of Membrane Science, 411-412 (2012) 54-63.
[74] R.W. Baker, Membrane Technology, in: Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc., 2002.
[75] Q. Li, C. Pan, J.O. Jensen, P. Noyé, N.J. Bjerrum, Cross-Linked Polybenzimidazole Membranes for Fuel Cells, Chemistry of Materials, 19 (2007) 350-352.
[76] C.G. Wu, M.I. Lu, H.J. Chuang, PVdF-HFP/P123 hybrid with mesopores: a new matrix for high-conducting, low-leakage porous polymer electrolyte, Polymer, 46 (2005) 5929-5938.
[77] Q.F. Li, H.C. Rudbeck, A. Chromik, J.O. Jensen, C. Pan, T. Steenberg, M. Calverley, N.J. Bjerrum, J. Kerres, Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes, Journal of Membrane Science, 347 (2010) 260-270.
[78] S.W. Chuang, S.L.C. Hsu, Y.H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, Journal of Membrane Science, 305 (2007) 353-363.
[79] C.M. Sinko, G.L. Amidon, Plasticizer-induced changes in the mechanical rate of response of film coatings: an approach to quantitating plasticizer effectiveness, International Journal of Pharmaceutics, 55 (1989) 247-256.
[80] X. Chen, Y. Xiang, J.J. Vlassak, Novel technique for measuring the mechanical properties of porous materials by nanoindentation, Journal of Materials Research, 21 (2006) 715-724.
[81] P. Noyé, Q. Li, C. Pan, N.J. Bjerrum, Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker, Polymers for Advanced Technologies, 19 (2008) 1270-1275.
[82] Y.S. Guan, H.T. Pu, M. Jin, Z.H. Chang, D.C. Wan, Preparation and Characterisation of Proton Exchange Membranes Based on Crosslinked Polybenzimidazole and Phosphoric Acid, Fuel Cells, 10 (2010) 973-982.
[83] S. Wang, C. Zhao, W. Ma, N. Zhang, Y. Zhang, G. Zhang, Z. Liu, H. Na, Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells, Journal of Materials Chemistry A, 1 (2013) 621.
[84] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L. Zhang, H. Na, Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 36 (2011) 8412-8421.
[85] M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C.M. Lew, H. Na, Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells, Journal of Materials Chemistry, 21 (2011) 2187.
[86] D. Aili, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications, Polymer International, 60 (2011) 1201-1207.
[87] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, PBI-based polymer electrolyte membranes fuel cells, Electrochimica Acta, 52 (2007) 3910-3920.
[88] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science, 377 (2011) 1-35.
[89] J.M. Parker, P.V. Wright, C.C. Lee, A double helical model for some alkali metal ion-poly(ethylene oxide) complexes, Polymer, 22 (1981) 1305-1307.
[90] B. Scrosati, F. Croce, S. Panero, Progress in lithium polymer battery R&D, Journal of Power Sources, 100 (2001) 93-100.
[91] A. Lewandowski, K. Skorupska, J. Malinska, Novel poly(vinyl alcohol)–KOH–H2O alkaline polymer electrolyte, Solid State Ionics, 133 (2000) 265-271.
[92] S.J. Lue, W.-T. Wang, K.P.O. Mahesh, C.C. Yang, Enhanced performance of a direct methanol alkaline fuel cell (DMAFC) using a polyvinyl alcohol/fumed silica/KOH electrolyte, Journal of Power Sources, 195 (2010) 7991-7999.
[93] H. Hou, G. Sun, R. He, B. Sun, W. Jin, H. Liu, Q. Xin, Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell, International Journal of Hydrogen Energy, (2008).
[94] A.D. Modestov, M.R. Tarasevich, A.Y. Leykin, V.Y. Filimonov, MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes, Journal of Power Sources, 188 (2009) 502-506.
[95] J. Fang, P.K. Shen, Quaternized poly(phthalazinon ether sulfone ketone) membrane for anion exchange membrane fuel cells, Journal of Membrane Science, 285 (2006) 317-322.
[96] L. Li, Y. Wang, Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells, Journal of Membrane Science, 262 (2005) 1-4.
[97] G. Wang, Y. Weng, D. Chu, R. Chen, D. Xie, Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity, Journal of Membrane Science, 332 (2009) 63-68.
[98] T. Xu, Z. Liu, Y. Li, W. Yang, Preparation and characterization of Type II anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), Journal of Membrane Science, 320 (2008) 232-239.
[99] M. Kumar, S. Singh, V.K. Shahi, Cross-Linked Poly(vinyl alcohol)−Poly(acrylonitrile-co-2-dimethylamino ethylmethacrylate) Based Anion-Exchange Membranes in Aqueous Media, The Journal of Physical Chemistry B, 114 (2009) 198-206.
[100] X. Lin, X. Liang, S.D. Poynton, J.R. Varcoe, A.L. Ong, J. Ran, Y. Li, Q. Li, T. Xu, Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells, Journal of Membrane Science, 443 (2013) 193-200.
[101] X. Lin, J.R. Varcoe, S.D. Poynton, X. Liang, A.L. Ong, J. Ran, Y. Li, T. Xu, Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells, Journal of Materials Chemistry A, 1 (2013) 7262-7269.
[102] B. Lin, H. Dong, Y. Li, Z. Si, F. Gu, F. Yan, Alkaline Stable C2-Substituted Imidazolium-Based Anion-Exchange Membranes, Chemistry of Materials, 25 (2013) 1858-1867.
[103] B.C. Lin, L.H. Qiu, J.M. Lu, F. Yan, Cross-Linked Alkaline Ionic Liquid-Based Polymer Electrolytes for Alkaline Fuel Cell Applications, Chemistry of Materials, 22 (2010) 6718-6725.
[104] W. Lu, Z.G. Shao, G. Zhang, Y. Zhao, J. Li, B. Yi, Preparation and characterization of imidazolium-functionalized poly (ether sulfone) as anion exchange membrane and ionomer for fuel cell application, in: International Journal of Hydrogen Energy, 2013, pp. 9285-9296.
[105] W. Li, J. Fang, M. Lv, C. Chen, X. Chi, Y. Yang, Y. Zhang, Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications, Journal of Materials Chemistry, 21 (2011) 11340.
[106] B. Lin, L. Qiu, B. Qiu, Y. Peng, F. Yan, A Soluble and Conductive Polyfluorene Ionomer with Pendant Imidazolium Groups for Alkaline Fuel Cell Applications, Macromolecules, 44 (2011) 9642-9649.
[107] B. Qiu, B. Lin, L. Qiu, F. Yan, Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications, Journal of Materials Chemistry, 22 (2012) 1040.
[108] X. Li, Y. Yu, Q. Liu, Y. Meng, Synthesis and characterization of anion exchange membranes based on poly(arylene ether sulfone)s containing various cations functioned tetraphenyl methane moieties, International Journal of Hydrogen Energy, 38 (2013) 11067-11073.
[109] D. Henkensmeier, H.-J. Kim, H.-J. Lee, D.H. Lee, I.-H. Oh, S.-A. Hong, S.-W. Nam, T.-H. Lim, Polybenzimidazolium-Based Solid Electrolytes, Macromolecular Materials and Engineering, 296 (2011) 899-908.
[110] H.Y. Hou, S.L. Wang, H. Liu, L.L. Sun, W. Jin, M.Y. Jing, L.H. Jiang, G.Q. Sun, Synthesis and characterization of a new anion exchange membrane by a green and facile route, International Journal of Hydrogen Energy, 36 (2011) 11955-11960.
[111] O.D. Thomas, K.J.W.Y. Soo, T.J. Peckham, M.P. Kulkarni, S. Holdcroft, Anion conducting poly(dialkyl benzimidazolium) salts, Polymer Chemistry, 2 (2011) 1641-1643.
[112] D. Henkensmeier, H.-R. Cho, H.J. Kim, C. Nunes Kirchner, J. Leppin, A. Dyck, J.H. Jang, E. Cho, S.-W. Nam, T.H. Lim, Polybenzimidazolium hydroxides – Structure, stability and degradation, Polymer Degradation and Stability, 97 (2012) 264-272.
[113] O.D. Thomas, K.J.W.Y. Soo, T.J. Peckham, M.P. Kulkarni, S. Holdcroft, A Stable Hydroxide-Conducting Polymer, Journal of the American Chemical Society, 134 (2012) 10753-10756.
[114] M. Hu, E.M. Pearce, T.K. Kwei, Modification of polybenzimidazole: Synthesis and thermal stability of poly(N1-methylbenzimidazole) and poly(N1,N3-dimethylbenzimidazolium) salt, Journal of Polymer Science Part A: Polymer Chemistry, 31 (1993) 553-561.
[115] H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochimica Acta, 357–358 (2000) 97-102.
[116] X. Li, Q. Liu, Y. Yu, Y. Meng, Quaternized poly(arylene ether) ionomers containing triphenyl methane groups for alkaline anion exchange membranes, Journal of Materials Chemistry A, 1 (2013) 4324-4335.
[117] B. Smitha, S. Sridhar, A.A. Khan, Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells†, Macromolecules, 37 (2004) 2233-2239.
[118] J. Ran, L. Wu, J.R. Varcoe, A.L. Ong, S.D. Poynton, T. Xu, Development of imidazolium-type alkaline anion exchange membranes for fuel cell application, Journal of Membrane Science, 415-416 (2012) 242-249.
[119] Y. Ye, Y.A. Elabd, Relative Chemical Stability of Imidazolium-Based Alkaline Anion Exchange Polymerized Ionic Liquids, Macromolecules, 44 (2011) 8494-8503.
[120] D. Chen, M.A. Hickner, Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes, ACS Appl Mater Interfaces, 4 (2012) 5775-5781.
[121] S.A. Nuñez, M.A. Hickner, Quantitative1H NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes, ACS Macro Letters, 2 (2013) 49-52.
[122] S.T. Handy, M. Okello, The 2-Position of Imidazolium Ionic Liquids: Substitution and Exchange, The Journal of Organic Chemistry, 70 (2005) 1915-1918.
[123] J. Wang, S. Gu, R.B. Kaspar, B. Zhang, Y. Yan, Stabilizing the Imidazolium Cation in Hydroxide-Exchange Membranes for Fuel Cells, ChemSusChem, 6 (2013), 2079-2082.