| 研究生: |
李建宏 Lee, Jian-Hong |
|---|---|
| 論文名稱: |
氧化鋅奈米柱陣列成長特性 Growth and characterization of ZnO nanorod arrays by aqueous solution method |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 微影 、一維奈米結構 、二氧化鈦 、場發射 、氧化鋅 、水溶液法 |
| 外文關鍵詞: | lithography, one-dimensional nanostructure, TiO2, ZnO, Aqueous solution method, field emission |
| 相關次數: | 點閱:93 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於一維氧化鋅奈米結構具備異向性質,為整合運用於各類元件並有效利用其異向性,必須於適當位置上成長,以獲得預期的性能。本論文研究水浴法中氧化鋅奈米柱陣列成長特性,釐清其成長機制,並進行擇區成長以製作圖案,以提昇氧化鋅奈米柱未來於元件的應用。
本研究採用低溫(<90℃)水溶液法製備一維氧化鋅奈米柱陣列於矽基板及鋅箔。透過改變水溶液的反應條件,包括濃度、反應時間及基板等製程參數探討對氧化鋅晶體成長特性的變化。利用醋酸鋅及氫氧化鈉粉末均勻混合於異丙醇溶劑中合成氧化鋅奈米粒子,並以旋轉塗佈於基板作為種晶使用。當反應濃度降低(0.025 M),所得氧化鋅奈米柱長徑比較高(13倍)。另外,有別於一般預先塗佈種晶層之繁複步驟,直接由鋅箔熱處理控制氧化程度以製作種晶,除減少製程步驟外,更能有效製備大面積且高取向之氧化鋅奈米柱。所得氧化鋅奈米柱經結晶性及結構分析,為六方纖鋅礦氧化鋅單晶結構,且生長方向為[0001]。在光電流測試中,發現隨著氧化鋅奈米柱長度與表面積的增加,所得光響應電流及單一波長光電轉換效率較大。
在水浴法成長氧化鋅奈米柱中,氧化鋅奈米粒子最常被作為種晶層使用的材料。然而,並沒有相關文獻針對種晶層的圖案化製作進行研究,本研究以電泳沉積技術結合奈米球微影技術沈積氧化鋅奈米種晶,藉由改變膠體溶液pH值,探討其對界面電位、形態及氧化鋅奈米柱成長之影響。結果顯示:氧化鋅奈米種晶的沈積形貌與膠體溶液及聚苯乙烯值界面電位有關,藉由製程參數控制獲得實心及空心氧化鋅奈米粒子種晶層形貌。
至於擇區成長,主要是應用微接觸技術以轉印十八烷基三氯矽烷自組裝薄膜於種晶層上,以製作規則圖案,即可成長有序氧化鋅奈米柱陣列。反應溶液接觸自組裝薄膜區域與未覆蓋之種晶層時各有不同成長行為,最大原因來自於種晶層的異質成核與經由水溶液中凡得瓦力作用的均質成核。比較不同圖案之氧化鋅陣列場發射性質,點狀圖案具有較佳場發射性質,起始電壓為4.65 V/μm。
本研究亦利用電沈積結合奈米球微影製作鎳膜模板以控制奈米柱擇區成長的特性,藉由改變鎳膜模板的孔洞大小,可有效控制氧化鋅奈米柱陣列密度。於場發射測試中發現氧化鋅奈米柱之陣列密度在1.18 × 108 nanords/cm2時具有最低之起始電場2.98 V/μm。當陣列密度增加,場發射屏蔽效應隨之增加。
最後提出一新穎模板輔助成長方法,可在室溫下以單一步驟於矽基板上製備一維二氧化鈦奈米結構(奈米管及奈米柱)陣列。在前人研究中,指出以一維材料作為核心材料之模板輔助方法,藉由核心材料的移除可獲得奈米管結構,然而僅限於管狀結構。本研究中以一維氧化鋅奈米柱做為模板材料,並利用選擇性蝕刻原理,造成氧化鋅表面上二氧化鈦的沈積及核心氧化鋅的溶解反應之同步進行,待核心氧化鋅材料完全溶解後,可獲得前端封閉之二氧化鈦之奈米管結構。本方法亦可利用沈積時間之長短有效控制二氧化鈦奈米管之管壁厚度,更可獲得前人研究所無法製得之奈米柱結構。
To properly utilize the anisotropic properties of one-dimensional ZnO nanostructures in device applications, the control of the ZnO grown on selected positions is necessity since this would largely determine the device functionality and performance. The growth and characterization of ZnO nanorod arrays by aqueous solution method are explored in this study. The main purposes are to develop the patterning techniques and to understand the related mechanisms.
ZnO nanorod arrays have been synthesized onto both Si substrate and zinc foil by a low-temperature (<90℃) aqueous solution method. The effects of the concentration, substrate, and reaction period on the nanorod growth have been investigated in this study. The ZnO nanoparticle seeds were prepared from the zinc acetate in 2-propanol with NaOH, the use of ZnO nanoparticles on substrates as seed-layer helps reduce the diameter of grown ZnO nanorods. The aspect ratios of ZnO nanorods are enhanced when the concentration is decreased. In addition, oriented ZnO nanorod arrays could be obtained onto zinc foil directly without the need of pre-depositing ZnO nanoparticels. A dense and homogeneous ZnO thin film grown on the zinc foil was used as a seed-layer by way of varying the oxidation conditions of zinc foil. The structure of ZnO nanorods onto the zinc foil is single crystalline and grown in the [0001] direction with the wurzite structure. The photocurrent and IPCE are enhanced as the length of the nanorods is increased due to the increase of the surface area of the nanorod.
ZnO nanoparticles are the most commonly used as seed-layer materials for the ZnO nanorods growth in the aqueous solution process. However, the preparation of patterned ZnO nanoparticles seedlayer has never been reported. Electrophoretic deposition and nanosphere lithography were combined to fabricate periodic arrays of ZnO nanoparticle seed-layer. The study was focused on the effects of the pH of the suspensions, the surface charge of the particles in the suspension, the deposition characteristics of the deposited ZnO nanoparticle seed-layer, and the ZnO nanorod arrays. By electrophoretic deposition, hollow and solid hexagonal-patterned ZnO nanoparticle seed-layer could be obtained by controlling the processing parameters.
Oriented ZnO nanorod arrays are successfully pattern-grown using an organic template by microcontact printing on ZnO-coated Si substrate. The use of SAMs of OTS as a template helps to site-selectively produce ZnO nanorods from an aqueous solution. The growth behavior between contact and noncontact areas was investigated. Different formation mechanisms are proposed, and it is found that the key difference between nanorod and microrod formation is attributed to the direct growth on the ZnO seed-layer and the attraction of homogenerously nucleated microrods by van der Waals force at specific conditions, respectively. The lowest turn-on applied field strength is 4.65 V/μm for dot pattern ZnO nanorod arrays.
ZnO nanorods with different array density were synthesized on the hexagonally arranged circular patterns surrounded by nickel membranes prepared by electrodeposition and nanosphere lithography. Electrodeposition of Ni was performed for different durations to control the pore diameter. The pores were used to guide the growth of ZnO nanorods from the exposed ZnO seed-layer. The field emission measurement shows that ZnO nanorod arrays with an array density of 1.73 rods/μm2 has the lowest turn-on field of 2.98 V/μm. The increase of the ZnO array density results in inferior emission properties.
Finally, a novel and one-step templating synthetic strategy has been presented in this report for preparation of the aligned TiO2 nanotube and nanorod arrays on Si substrate from a solution and at ambient temperature. In the reported studies, it is common for the template-assisted methods to obtain nanotubes only by removing the core materials through an additional wet etching step and to leave the aligned arrays of inorganic nanotubes on the Si substrate. Therefore, the only structure, i.e. nanotubular structure could be obtained by the template method. However, in our study, we successfully utilized the selective-etching of ZnO nanorod template and the concurrent deposition of TiO2 to prepare the arrays of end-closed TiO2 one-dimensional nanostructures. Furthermore, the different thickness of TiO2 sheaths, leading to the formation of nanotubes or nanorods, can be precisely controlled by the deposition time.
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
[2] D. A. Neamen, “Semiconductor Physics & Devices”, 2nd ed., p.105 (1992)
[3] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, “Growth and optical properties of nanometer-scale GaAs and InAs whiskers”, J. Appl. Phys., 77, 447 (1995)
[4] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting transparent thin films”, Published by institute of physics publication, p. 17 (1995)
[5] Y. W. Jin, J. E. Jang, W. K. Yi, J. E. Jung, N. S. Lee, J. M. Kim, D.Y. Jeon and J. P. Hong, “Performance of electrophoretic deposited low voltage phosphors for full color field emission display devices”, J. Vac. Sci. Technol. B., 17, 489 (1999)
[6] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897 (2001)
[7] N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sensors Actuators, 5, 7 (1991)
[8] G. Agarwal, and R. F. Speyr, “Current change method of reducing gas sensing using ZnO varistors”, J. ElectrochemL. Soc., 145, 2920 (1998)
[9] J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes”, ACC. Chem. Res., 32, 435 (1999)
[10] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells”, Nature Mater., 4, 455 (2005)
[11] Z. L. Wang, “Nanostructures of zinc oxide”, Materials Today, 26 (2004)
[12] M. T. Browne, P. Charalambous, and V. A. Kudryashov, “Conditions on CoSi2 Formation in the Presence of a Ti Capping Layer”, Microelectron Eng., 13, 221, (1999)
[13] J. W. P. Hsu, Z. R Tian, N. C. Simmons, C. M. Matzke, J. A.Voigt, and J. Liu, “Directed spatial organization of zinc oxide nanorods”, Nano Lett., 5, 83 (2005)
[14] M. Geissler, A. Bernard, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, “Microcontact-printing chemical patterns with flat stamps”, J. Am. Chem. Soc., 122, 6303 (2000)
[15] X. Wang, C. J. Summers, and Z. L. Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays”, Nano Lett., 4, 423 (2004)
[16] T. W. Odom, J. Henzie, Y. Babayan, E. C. Greyson, and E. S. Kwak, “Optical properties of surface-patterned nanostructures”, Talanta, 67, 507 (2005).
[17] J. W. P. Hau, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. Liu, “Directed Spatial Organization of Zinc Oxide Nanorods”, Nano Lett., 5, 83 (2005)
[18] N. Saitoa, H. Hanedaa, and K. Koumoto, “Pattern-deposition of light-emitting ZnO particulate film through biomimetic process using self-assembled monolayer template ”, Microelectron J., 35, 349 (2004).]
[19] X. M. Yang, R. D. Peters, T. K. Kim, P. F. Nealey, S. L. Brandow, M. S. Chen, L. M. Shirey, W. J. Dressick, “Proximity X-ray lithography using self-assembled alkylsiloxane films: resolution and pattern transfer”, Langmuir, 17, 228 (2001)
[20] T. W. Ebbesen, H. J. Lezec, H. F. Ghaem, “Extraordinary optical transmission through subwavelength hole arrays”, Nature, 391, 667 (1998)
[21] H. N. Lin, Y. H. Chang, J. H. Yen, J. H. Hsu, I. C. Leu, M. H. Hon, “Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscope nano-oxidation”, Chem. Phys. Lett., 399, 422 (2004)
[22] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. Yang, “Single-crystal gallium nitride nanotubes”, Nature, 422, 599 (2003)
[23] J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, S. Kim, “Al2O3 Nanotubes Fabricated by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers”, Adv. Mater, 16, 422 (2004)
[24] R. Wang, L. H. King and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, J. Master. Res., 11, 1659 (1996)
[25] A. Wei, W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, and W. Hung, “Growth mechanism of tubular ZnO formed in aqueous solution” Nanotechnology, 17, 1740 (2006)
[26] L. Vayssieres, K. Keis, S. Eric Lindquist, and A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, J. Phys. Chem. B, 105, 3350 (2001)
[27] Z. L. Wang, “Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces”, Adv. Funct. Mater., 14, 943 (2004).
[28] Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel nanostructures of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater., 13, 9 (2003)
[29] J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays”, J Chem. Phys., 115, 5714 (2001)
[30] W. Lee, M. C. Jeong, and J .M. Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation”, Acta Materials, 52, 3949 (2004)
[31] W. Z. Zhong, and G. Z. Liu, “Growth units and formation mechanisms of the crystals under hydrothermal conditions”, Sci. China (B), 24, 394 (1994)
[32] R. A. Laudise, and A. A. Ballman, “Hydrothermal synthesis of zinc oxide and zinc sulfide”, J. Phys. Chem., 64, 688 (1960)
[33] W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, J. Cryst. Growth, 203, 186 (1999)
[34] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution., J. Mater. Chem., 14, 2575 (2004)
[35] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395 (2001)
[36] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15, 464 (2003)
[37] Z. R. Tian, J. A. Voigt, J. Iu, B. Mckenzie, and M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns”, J. Am. Chem. Soc., 124, 12954 (2002)
[38] L. E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew Chem. Int. Ed., 42, 3031 (2003)
[39] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds”, Nano Letters, 5, 1231 (2005)
[40] Y. Sun, D. J. Riley, M. N. R. Ashfold, J. Phys. Chem. B, “Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates”, 110, 15186 (2006)
[41] K. Yu, Z. Jin, X. Liu, J. Zhao, and J. Feng, “Shape alterations of ZnO nanocrystal arrays fabricated from NH3•H2O solutions”, Appl. Surface Sci., 253, 4072 (2007)
[42] X. M. Sun, X. Chen, Z. X. Deng, and Y. D. Li, “A CTAB-assisted hydrothermal orientation growth of ZnO nanorods”, Mater. Chem. Phys., 78, 99 (2002)
[43] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions”, Chem. Mater., 17, 1001 (2005)
[44] S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst”, J. Am. Chem. Soc., 9, 45 (2008)
[45] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, and Z. L. Wang, “Pattern and feature designed growth of ZnO nanowire arrays for vertical devices”, J. Phys. Chem. B, 110, 50 (2006)
[46] F. Burmeister, C. Schäfle, B. Keilhofer, C. Bechinger, J. Boneberg, and P. Leiderer, “From mesoscopic to nanoscopic surface structures: lithography with colloid monolayers”, Adv. Mater., 10, 495 (1998)
[47] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir, 18, 3183 (1992)
[48] A. Kumar, and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol 'ink' followed by chemical etching”, Appl. Phys. Lett., 1993, 63, (2002)
[49] Y. Xia, and M. Whitesides, “Soft Lithography”, Angew. Chem. Int. Ed., 37, 550 (1998)
[50] J. Sagiv, “Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces”, J. Am. Chem. Soc., 102, 92 (1980)
[51] A. Modinos, Chapter one, “Electron emission from free-electron metal,” in Field, Thermionic, and Second Electron Emission Spectroscopy, Plenum Press, 34 (1984)
[52] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields”, Proc. R. Soc. London Ser. A, 119, 173 (1928)
[53] T. utsumi, “vaccum microelectronics: what’s new and exciting”, IEEE Trans.Electron Dev. 38 (1991) 2276
[54] L. Nilsson, O. Groening, C. Emmmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.M. Bonard, and K. Kern, “Scanning field emission from patternec carbon nanotube films”, Appl. Phys. Lett., 76, 2071 (2000)
[42]
[43] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly”, Appl. Phys. Lett., 84, 3376 (2004)
[55] M. Gratzel, “Photoelectrochemical cells”, Nature, 414, 338 (2001)
[56] A. Kudo, “Photocatalyst materials for water splitting”, Catal. Surveys from Asia, 7, 31 (2003)
[57] F. Jabeen, S Rubini, V Grillo, L. Felisari, and F. Martelli, “Room temperature luminescent InGaAs/GaAs core-shell nanowires”, Appl. Phys. Lett., 93, 083117 (2008)
[58] J. Qiu, W. Yu, X. Gao and X. Li, “Sol–gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays”, Nanotechnology, 17, 4695 (2006)
[59] J. Qiu, W. Yu, X. Gao and X. Li, “Fabrication and characterization of TiO2 nanotube arrays having nanopores in their walls by double-template-assisted sol–gel”, Nanotechnology, 18, 295604 (2007)
[60] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, “ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells”, J. Phys. Chem. B, 110, 22652 (2006)
[61] Y. Tak, and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method”, J. Phys. Chem. B, 109, 19263 (2005)
[62] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in aqueous solutions”, J. Mater. Chem., 12, 3773 (2002)
[63] Z. Chen, and L. Gao, J. Crystal Growth, “A facile route to ZnO nanorod arrays using wet chemical method”, 293, 522 (2006)
[64] A. Chemseddine, and T. Moritz, “Nanostructuring titania: control over nanocrystal structure, size, shape, and organization”, Eur. J. Inorg. Chem., 235 (1999)
[65] J. S. Reed, “Introduction to the Principles of Ceramic Processing”, John Wiley & Sons, New York, p.142 (1986)
[66] J. Ma, R. Zhang, C.H. Liang and L. Weng, “Colloidal characterization and electrophoretic deposition of PZT”, Matt. Lett., 57, 4648 (2003)
[67] K. S. Seshadri, M. Selvaraj, R. Kesavamoorthy, M. P. Srinivasan, K. Varatharajan, K. B. Lal, and V. Krishnasamy, “Estimation and comparison of pore charge on titania and zirconia membranes prepared by sol-gel route using zeta potential measurement”, J. Sol-Gel Sci. Techn., 28, 327 (2003)
[68] G. L. Messing, S. I. Hirano, and L. Gauckler “Ceramic Processing Science and Technology”, J. Am. Ceram. Soc., 89, 1769 (2006)
[69] P. Sarkar and P. S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics”, J. Am. Ceram. Soc., 79, 1987 (1996)
[70] 王元聰,氧化鋁模板輔助氧化鋅奈米陣列成長特性,國立成功大學材 料科學及工程學系,博士論文。
[71] R. J. Hunter, “Foundations of Colloid Science”, Oxford University, New York, Chapter 6 (1985)
[72] I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Adv. Colloid Interface Sci., 97, 279 (2002)
[73] A. K. Arora and B. V. R. Tata, “In ordering and phase transition in charged colloids”, VCH, New York, p.315.
[74] J. Z. Wu, D. Bratko, H. W. Blanch, and J. M. Prausnitz, “Monte Carlo simulation for the potential of mean force between ionic colloids in solutions of asymmetric salts”, J. Chem. Phys. 111, 7084 (1999)
[75] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, “Preparation and photoluminescence of highly ordered TiO2 nanowire arrays”, Appl. Phys. Lett., 78, 1125 (2001)
[76] X. Y. Zhang, L. Zhang, W. Chen, G. Meng, M. J. Zheng and L. X. Zhao, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays”, Chem. Mater., 13, 2511 (2001)
[77] H. Mizoguchi, K. Ueda, M. Orita, S. C. Moon, K. Kajihara, M. Hirano, and H. Hosono, “Decomposition of water by a CaTiO3 photocatalyst under UV light irradiation”, Mater. Res. Bulletin, 37, 2401 (2002)
[78] Z. Zou, J. Ye, K. Sayama, and H. Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst”, Nature, 414, 625 (2001)
[79] D. W. Hwang, J. Kim, T. J. Park, and J. S. Lee, “Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting”, Catalysis Lett., 80 53 (2002)
[80] J. Tang, Z. Zou, and J. Ye, “Photocatalytic decomposition of organic contaminants by Bi 2WO6 under visible light irradiation”, Catalysis Lett., 92, 53 (2004)
[81] J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, and Y. Inoue, “Photocatalytic activity for water decomposition of RuO2- dispersed Zn2GeO4 with d10 configuration”, J. Phys. Chem. B, 108, 369 (2004)
[82] K. Kakiuchi, E. Hosono, and S. Fujihara, “Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719”, J. Photochem. Photobiol. A: Chem., 179, 81 (2006)
[83] O. N. Sruvastava, R. K. Karn, and M. Misra, “Semiconductor-septum photoelectrochemical solar cell for hydrogen production”, International J. Hydrogen Energy, 25, 495 (2000)
[84] Y. Xie, “Photoelectrochemical reactivity of a hybrid electrode composed of polyoxophosphotungstate encapsulated in titania nanotubes”, Adv. Funct. Mater., 16, 1823 (2006)
[85] R. N. Pandey, K. S. C. Baru, and O. N. Srivastava, “High conversion efficiency photoelectrochemical solar cell”, Process in Surface Science, 51, 135 (1996)
[86] S. Krämer, R. R. Fuierer, and C. B. Gorman, “Scanning probe lithography using self-assembled monolayers”, Chem. Rev., 103, 4367 (2003)
[87] Y. Harada; G. S.Girolami, and R. G. Nuzzo, “Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers”, Langmuir, 20, 10878 (2004)
[88] S. S. Cheng, D. A. Scherson, and C. N. Sukenik, “In situ observation of monolayer self-assembly by FTIR/ATR”, J. Am. Chem. Soc., 114, 5436 (1992)
[89] F. L. Dickert S. Thierer, “Molecularly imprinted polymers for optochemical sensors”, Adv. Mater., 8, 987 (1996)
[90] N. Tilman, A. Ulman, J. S. Schildkraut, and T. L. Penner, “Incorporation of phenoxy groups in self-assembled monolayers of trichlorosilane derivatives. Effects on film thickness, wettability, and molecular orientation”, J. Am. Chem. Soc., 110, 6136 (1988)
[91] N. Tillman, A. Ulman, and T. L. Penner, “Formation of multilayers by self-assembly”, Langmuir, 5, 101 (1989)
[92] C. F. Bases, and R. Mesmer, “The hydrolysis of cations”, reprinted ed., John Wiley and Sons: New York 1986
[93] R. C. Hoffmanna, J. C. Bartolomea, and S. Wildhacka, “Relation between particle growth kinetics in solution and surface morphology of thin films: implications on the deposition of titania on polyethylene terephthalate”, Thin Solid Films, 478, 164 (2005)
[94] B. Liu and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm”, J. Am. Chem. Soc., 125, 4430 (2003)
[95] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, “Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products”, Science, 289, 751 (2000)
[96] C. Pacholski, A. Kornowski, and H. Weller, “Self-Assembly of ZnO: From Nanodots to Nanorods”, Angew. Chem. Int. Ed., 41, 1188 (2002)
[97] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, “Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser”, Adv. Mater., 15, 1911 (2003)
[98] Q. Wan, K. Yu, T .H. Wang, and C. L. Lin, “ZnO nanowires formed on tungsten substrates and their electron field emission properties”, Appl. Phys. Lett., 82, 1096 (2003)
[99] C. X. Xu, and X. W. Sun, “Field emission from zinc oxide nanopins”, Appl. Phys. Lett., 83, 3806 (2003)
[100] S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, “Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties”, Appl. Phys. Lett., 82, 3520 (2003)
[101] T. Sumida, Y. Wada, T. Kitamura, and S. Yangagida, “Electrochemical preparation of macroporous polypyrrole films with regular arrays of interconnected spherical voids”, Chem. Commun., 17, 1613 (2000)
[102] G. Hodes, “Electrochemistry of Nanomaterials”, Chap. 3, p.72, Wiley-VCH, Weinheim 2001
[103] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hon, “Fabrication of various nickel nanostructures by manipulating the one-step electrodeposition process”, J. Electrochem. Soc., 154, E77 (2007)
[104] S. Tian, J. Wang, U. Jonas, and W. Knoll, “Inverse opals of polyaniline and its copolymers prepared by electrochemical techniques”, Chem. Mater., 17, 5726 (2005)
[105] G. Duan, W. Cai, Y. Luo, Z. Li, and Y. Lei, “Novel 2D ordered arrays of nanostructures fabricated through silica masks formed by bilayer colloidal crystals as templates”, J. Phys. Chem. B, 110, 15729 (2006)
[106] Y. W. Chung, I. C. Leu, J. H. Lee, J. H. Yen, and M. H. Hon, “Fabrication of egg-shell-roofed macroporous nickel films by a template-mediated electrodeposition process”, Elecrochimica Acta, 53, 1703 (2007)
[107] M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals”, Appl. Phys. Lett., 82 1069 (2003)
[108] Y. Li, W. Cai, B. Cao, G. Duan, C. Li, F. Sun, and H. Zeng, “Morphology-controlled 2D ordered arrays by heating-induced deformation of 2D colloidal monolayer”, J. Mater. Chem., 16, 609 (2006)
[109] B. E. Conway and O’M. Bockris, “Electrode kinetics of the deposition and dissolution of iron”, Electrochem Acta, 3, 340 (1961)
[110] M. Paunovic, and M. Schlesinger, “”Fundamentals of Electrochemical Deposition”, Wiley, 2006
[111] M. Schlesinger, and M. Paunovic, “Modern Electroplating”, John Wiley & Sons, Inc. 4th Edition, 2000
[112] C. Li, Y. Yang, X.W. Sun, W. Lei, X.B. Zhang, B.P. Wang, J.X. Wang, B.K. Tay, J.D. Ye, G.Q. Lo, D.L. Kwong, “Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect”, Nanotechnology, 18, 135604 (2007)
[113] X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, and Z. L. Wang, “In situ field emission of density-controlled ZnO nanowire arrays”, Adv. Mater., 19, 1627 (2007)
[114] H. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, and M. Katayama, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect”, Appl. Phys. Lett., 90, 153108 (2007)
[115] L .F. Dong, J. Jiao, D. E. Tuggle, J. M. Petty, S. A. Elliff, and M. Coulter, “ZnO nanowires formed on tungsten substrates and their electron field emission properties”, Appl. Phys. Lett. 82, 1096 (2003)
[116] C. X. Xu, and X. W. Sun, “Field emission from zinc oxide nanopins”, Appl. Phys. Lett. 83, 3806 (2003)
[117] S. M. Yoon, J. Chae, and J. S. Suh, “Comparison of the field emissions between highly ordered carbon nanotubes with closed and opentips”, Appl. Phys. Lett., 84, 825 (2004)
[118] G. Margaritondo, and P. Perfetti, “”Heterojuction band discontinuities: physics and device application“”, Elsevier, Amsterdam (1987)
[119] A. Wadhawan, R.E. Stallcup, K. F. stephens, J. M. Perez, and I. A. Akwani, “Effects of O2, Ar, and H2 gases on the field-emission properties of single-walled and multiwalled carbon nanotubes”, Appl. Phys. Lett., 79, 1867 (2001)
[120] Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields”, Appl. Phys. Lett., 70, 3308 (1997)
[121] G. Xi, Y. Liu, X. Liu, X. Wang, and Y. Qian, “Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures”, J. Phys. Chem. B, 110, 14172 (2006)
[122] P. Hoyer, “Formation of a titanium dioxide nanotube array”, Langmuir, 12, 1411 (1999)
[123] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res., 16, 3331 (2001)
[124] O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, “Crystallization and high-temperature structural stability of titanium oxide nanotube arrays”, J. Mater. Res., 18, 156 (2003)
[125] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotube”, Langmuir, 14, 3160 (1998)
[126] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng, “Potassium titanate nanowires: Structure, growth, and optical properties ”, Appl. Phys. Lett. 79, 3702 (2001)
[127] S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, “Titanium (IV) Oxide Thin Films Prepared from Aqueous Solution”, Chem. Lett., 25, 433 (1996)
[128] www.chem.ryukoku.ac.jp/aoi/research/LPD.htm
[129] J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, and S. Kim, “Large-scale fabrication of ordered nanobowl arrays”, Nano. Lett,. 16, 422 (2004)
[130] G. Caruntu, G. Bush, C. J. O’Connor, “Synthesis and characterization of nanocrystalline zinc ferrite films prepared by liquid deposition”, J. Mater. Chem., 14, 2753 (2004)
[131] G. H. Bogush and C. F. Zukoski, “Studies of the kinetics of the precipitation of uniform silica particles through the hydrolysis and condensation of silicon alkoxides”, J. Colloid and interface, 142, 1 (1991)
[132] G.H. bogush, C.F. Zukoski, “Uniform silica particles precipitation: an aggregative growth model”, J. Colloid and Interface, 142, 19 (1991)
[133] J. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, “ The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition”, J. Phys. Chem. B, 107, 13871 (2003)
[134] A. C. Pierre, “Introduction to sol-gel processing”, kluwer academic Publishers, Boston, (1998)
[135] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Reports, 48, 53 (2003)
[136] “Phase Diagrams for Ceramists”, The American Ceramic Society, Inc., 76, (1975)