簡易檢索 / 詳目顯示

研究生: 盧俊良
Lu, Chun-Liang
論文名稱: 以矽穿孔技術研製三維結構之元件
3D Structured Devices Developed by Through Silicon Via Technology
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 98
中文關鍵詞: 矽穿孔覆晶發光二極體氣體感測器場發射顯示器
外文關鍵詞: TSV, flip chip LED, gas sensor, field emission
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用矽穿孔技術(through silicon via, TSV)控制蝕刻選擇比,成功的整合覆晶發光二極體、氧化銅/氧化亞銅奈米線、氣體感測器製作出3D結構元件。
    首先我們將藍色覆晶發光二極體(Blue Flip Chip LED)整合TSV技術開發藍光發光二極體顯示晶片技術。成功將四吋覆晶發光二極體與六吋矽基板透過堆疊技術完成三維結構,相較於傳統的 Flip Chip LED 藉由底部凸塊的散熱方式,由於晶圓載具(Carrier Wafer)改為矽基座相較於藍寶石基板,有較佳的導熱特性,且矽基座本身可採用 TSV 進行內部連線及提供散熱之效果,可提升晶片之可靠度;以 TSV 之內部連線設計相較於傳統的 LED 封裝及 Flip Chip LED 製程已少打線(Wire Bond)的製程,可更加節省製程成本。依實驗結果得知孔洞的寬度是180 μm長度是400 μm,我也測量了單一銅導線的電阻值平均約為0.14 mΩ,在後續經電鍍錫銀凸塊後,經EDX分析錫銀含量比例約96.43Sn-3.57at%Ag,再經250度即可退火呈球,最後將LED 與TSV 基板以1000N 堆疊 30分鐘即可完成3D 結構,LED 與3D LED 發光效率分別為417.17 mW/W、424.67 mW/W。
    另一方面我們也成功研製共陰極微型 RGB 發光二極體顯示晶片,隨著Flip Chip RGB LED 尺寸縮小,因此 TSV 孔與孔之間必須縮小以減少元件的面積以提高 LED 顯示器像素密度。此外,也朝低成本 TSV 製程技術邁進,最終完成超微型 RGB 發光二極體顯示晶片。依實驗結果得知孔洞的寬度是55 μm長度是316 μm,我也測量了單一銅導線的電阻值平均約為0.61 mΩ。3D RGB LED 與RGB LED 經熱影像分析溫度分別為105度、120度,再經輸入電流20mA測量3D RGB LED發光效率分別為218 mW/W、186.65 mW/W、324.49 mW/W。
    另一方面,在氧化銅/氧化亞銅奈米線部分,我們成功研製場發射顯示器。陰極矽基板透過TSV電鍍填銅及銅蝕刻過程,最後以高溫550℃退火6小時形成氧化銅/氧化亞銅奈米線;陽極玻璃鍍上透明導電膜(ITO)再將螢光粉沉積在ITO上,最後將兩片基板疊合透過高電壓激發螢光粉發光,完成3D顯示元件。銅導線長度及寬度分別為200 μm及100 μm,以場發射量測開啟電壓約為15V μm-1,在經由穿隧效應公式計算出電場增強因子約為1748。
    最後,我們成功製作出雙面感測薄膜微機電氣體感測器,首先沉積 1 μm 的 SnO2 (290 μm × 290 μm),作為底部感應層,接著沉積 100 nm 的 Cr 和 500 nm 的 Ni,最後沉積2μm的 SnO2 (625 μm × 625 μm),作為頂部感應層。透過製作雙面式感應氣體感測器,利用這種方式,在尺寸不變的情況下能有效增加感應面積來達到氣體響應度更為靈敏。當測量溫度為200℃,改變酒精濃度為56 ppb, 112 ppb、223 ppb和 446 ppb時,響應分別為62.22%、74.61%、77.20%和 86%。

    The main goal of this dissertation is to application of through silicon via technology fabricate 3D flip-chip LED display, 3D micro flip-chip display, CuO/Cu2O nanostructured field emission display and bifacial SnO2 thin film ethanol gas sensor.
    First, we fabricated a blue light emitting diode (LED) was prepared by a flip-chip (FC) LED and three-dimensional through-silicon via (3D-TSV) technique. The experimental results indicated that the diameter and length of the Si via were about 180 μm and 400 μm, respectively. The Cu was uniformly and high density filled in each TSV, and the average resistance was about 0.14 mΩ. It was also found that the 96.43Sn-3.57at%Ag bumps were electroplated on the Cu plugged TSVs of a silicon substrate, and these were smoother at 250℃. After reflow, a 3D blue light emitting diode was prepared by peak bonding at 250℃ and 1000 N pressure for 30 min. Compared with the output of the LED 417.17 mw/W, that of the 3D LED was 424.67 mw/W.
    Next, we fabricated a common cathode 3D RGB light emitting diode chip is produced using through silicon via (TSV) technology. The experimental results show that the length and the wide of the Si via are about 316 nm and 55 μm, respectively. The Cu is uniform with a high density in each TSV and the average resistance is about 0.61 mΩ. The measurement of the thermal images shows that the temperature at which a 3D LED (105℃) operates is lower than that for a LED (120℃) when the two devices are injected with a 20 mA current. Using 20 mA current injections, the current-voltage (I-V) output for 3D RGB LED chips is on average 218.84 mW/W, 186.65 mW/W and 324.49 mW/W.
    Then, we fabricated a three dimensional (3D) field emission display structure was prepared using CuO/Cu2O composite nanowires (NWs) and a three dimensional through silicon via (3D-TSV) technique. The experimental results indicated that the diameter and length of the Si via were about 100 μm and 200 μm, respectively. For the 3D field emission structure, high-density CuO/Cu2O composite nanowires (NWs) were grown on the concave TSV structure using thermal oxidation. The field emission turn-on field and enhancement factor of the CuO/Cu2O composite NWs were 15 V μm-1 and ~1748, respectively. With regard to field emission displays, we successfully used the 3D field emission structure to excite the orange phosphors.
    The last, we fabricated a bifacial SnO2 thin film ethanol gas sensor was prepared using micro electro mechanical systems (MEMS) technology. For the sensing layers, a 1 μm thick SnO2 film (290 μm×290 μm) was deposited as the bottom sensing layer, and a square 2 μm SnO2 (625 μm×625 μm)was deposited as the top sensing layer. In the interdigital transducer (IDT) electrode and micro-heater, we deposited 100 nm thick Cr and 250 nm thick Ni, respectively. Compared with the single sided sensing layer, the measured results show that based on the ethanol sensitivity, the bifacial structure can greatly enhance the gas sensing properties of SnO2 sensors under an optimum working temperature of 200℃.

    摘要 I Abstract IV 誌謝 VII Figure Captions X Table Captions XIII CHAPTER 1 Introduction 1 1-1. Background and Motivation 1 1-2. Overview of Through-Silicon Via (TSV) 2 1-3. Overview of Cu TSV filled by Electroplating method 3 1-4. Overview of Sn-Ag Solder Bump For Flip-Chip Bonding by Electroplating 4 1-5. Overview of flip chip LED 5 1-6. Overview of gas sensor 6 1-7. Overview of CuO nanowire field emission 7 1-8. Organization of dissertation 8 CHAPTER 2 Experimental equipment and relevant theory 11 2-1. Through Silicon Via by Bosch DRIE and Cryogenic DRIE 11 2-2. Cu by Electroplating method 15 2-3. Sn-3.5Ag by Electroplating method 16 2-4. Growth of CuO nanowires by thermal oxidation method 18 CHAPTER 3 Through-silicon submount for flip-chip LEDs 23 3-1. Fabrication for the 3D LED 24 3-2. Analysis of 3D LED 26 3-3. Summary 29 CHAPTER 4 A 3D RGB light emitting diodes prepared by through silicon via technology 40 4-1. Fabrication for the 3D RGB light emitting diode chip 41 4-2. Analysis for the 3D RGB light emitting diode chip 42 4-3. Summary 45 CHAPTER 5 Through-silicon via submount for the CuO/Cu2O nanostructured field emission display 55 5-1. Fabrication for the CuO/Cu2O nanostructured field emission display 56 5-2. Analysis for the CuO/Cu2O nanostructured field emission display 57 5-3. Summary 59 CHAPTER 6 A bifacial SnO2 thin film ethanol gas sensor 66 6-1. Fabrication a bifacial SnO2 thin film ethanol gas sensor 67 6-2. Analysis for the bifacial SnO2 thin film gas sensor 68 6-3. Summary 71 CHAPTER 7 Conclusion 79 Reference 81

    [1] R. H. Horng, H. Y. Chien, K. Y. Chen, W. Y. Tseng, Y. T. Tsai, YT and F. G. Tarntair, “Development and Fabrication of AlGaInP-Based Flip-Chip Micro-LEDs”, IEEE J. Electron Devices Soc., vol. 6, no. 1, pp. 475-479 (2018).
    [2] L. Zhang, F. Ou, W. C. Chong, Y. J. Chen, and Q. M. Li, “Wafer-scale monolithic hybrid integration of Si-based IC and III-V epi-layersA mass manufacturable approach for active matrix micro-LED micro-displays”, J. Soc. Inf. Disp., vol. 26, no. 3, pp. 137-145 (2018).
    [3] Z. J. Liu, W. C. Chong, K. M. Wong and K. M. Lau, “GaN-based LED micro-displays for wearable applications”, Appl. Phys. Lett., vol. 148, pp. 98-103 (2015).
    [4] L. Feng, H. Yan, H. Li, R. K. Zhang, Z. Li, R. Chi, S. Y Yang,Y. Y. Ma, B. Fu and J. W. Liu, “Excellent field emission properties of vertically oriented CuO nanowire films”, AIP Adv., vol. 8, no. 4 (2018).
    [5] Z. F. Lin, P. Zhao, P. Ye, Y. C. Chen, H. B. Gan, J. C. She, S. Z. Deng, NS. Xu and J. Chen, “Maximum field emission current density of CuO nanowires: theoretical study using a defect-related semiconductor field emission model and in situ measurements”, Sci Rep, vol. 8, (2018).
    [6] G. Kaur, K. Saini, AK. Tripathi, V. Jain, D. Deva, I. Lahiri, “ Room temperature growth and field emission characteristics of CuO nanostructures”, Vacuum, vol. 139, pp. 136-142 (2017).
    [7] CM. Tang, XY. Liao, WJ. Zhong, HY. Yu, and ZW. Liu, “Electric field assisted growth and field emission properties of thermally oxidized CuO nanowires”, Sens. Actuators B, vol. 7, no. 11, pp. 6439-6446 (2017).
    [8] A. Dey, “Semiconductor metal oxide gas sensors: A review”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater, vol. 229, pp. 206-217 (2018).
    [9] J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim and H. W. Kim, “Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires”, Sens. Actuator B-Chem, vol. 274, pp. 356-369, (2018).
    [10] L. Zhu, W. Zeng and YQ. Li, “A novel cactus-like WO3-SnO2 nanocomposite and its acetone gas sensing properties”, Mater. Lett, vol. 231, pp. 5-7 (2018).
    [11] D. Meng, DY. Liu, GS. Wang, YB. Shen, XG. San, M. Li and FL. Meng, “Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets”, Sens. Actuator B-Chem, vol. 273, pp. 418-428 (2018).
    [12] LN. Xu, W. Zeng and YQ. Li, “Synthesis of morphology and size-controllable SnO2 hierarchical structures and their gas-sensing performance”, Appl. Surf. Sci, vol. 457, pp. 1064-1071 (2018).
    [13] JP. Gambino, S. A. Adderly and J. U. Knickerbocker, “An overview of through-silicon-via technology and manufacturing challenges”, Microelectron. Eng, vol. 135, pp. 73-106 (2015).
    [14] J. H. Lau, “Overview and outlook of through-silicon via (TSV) and 3D integrations”, Microelectron. Int, vol. 28, no. 2, pp. 8-22 (2011).
    [15] S. Lassig, “Manufacturing integration considerations of through-silicon via etching”, Solid State Technol, vol. 50, no. 12, pp. 48-+ (2007).
    [16] Y. Wang, X. Deng, XY. Ren, X. Li, FL. Wang and WH. Zhu, “Parameters determination for modelling of copper electrodeposition in through-silicon-via with additives”, Microelectron. Eng, vol. 196, pp. 25-31 (2018).
    [17] Q. S. Zhu, X. Zhang, C. Z. Liu and H. Y. Liu, “Effect of Reverse Pulse on Additives Adsorption and Copper Filling for Through Silicon Via”, J. Electrochem. Soc, vol. 166, no1, pp. D3006-D3012 (2018).
    [18] FL. Wang, ZP. Zhao, NT. Nie, F. Wang and WH. Zhu, “Dynamic through-silicon-via filling process using copper electrochemical deposition at different current densities”, Sci Rep, vol.7, no. 46639 (2017).
    [19] HB. Xiao, FL. Wang, Y. Wang, H. He and WH. Zhu, “Effect of Ultrasound on Copper Filling of High Aspect Ratio Through-Silicon Via (TSV)”, J. Electrochem. Soc, vol. 164, no. 4, pp.1093-1099 (2017).
    [20] A. Kamto, Y. Liu, L. Schaper and S. L. Burkett, “Reliability study of through-silicon via (TSV) copper filled interconnects”, Thin Solid Films, vol. 518, no. 5, pp. 1614-1619 (2009).
    [21] J. Jun, J. K. Park and J. P. Jung, “Fabrication of electroplate Sn-Ag bumps without a lithography process for 3D packaging”, Met. Mater.-Int, vol. 18, no. 3, pp. 487-491 (2012).
    [22] J. Jun, J. K. Park and J. P. Jung, “Fabrication of electroplate Sn-Ag bumps without a lithography process for 3D packaging”, Met. Mater.-Int, vol. 18, no. 3, pp. 487-491 (2012).
    [23] SW. Jung, JP. Jung and Y. Zhou, “Characteristics of Sn-Cu Solder Bump Formed by Electroplating for Flip Chip”, ‎IEEE Trans. Adv. Packag, vol. 29, no. 1, pp. 10-16 (2006).
    [24] Y. Qin, G. D. Wilcox and CQ. Liu, “Electrodeposition and characterisation of Sn-Ag-Cu solder alloys for flip-chip interconnection”, Acta, vol. 56, no. 1, pp. 183-192 (2010).
    [25] S. Arai, H. Akatsuka and N. Kaneko, “Sn-Ag Solder Bump Formation for Flip-Chip Bonding by Electroplating”, J. Electrochem. Soc, vol. 150, no. 10, pp. C730-C734 (2003).
    [26] https://www.ledsmagazine.com/ugc/2013/06/lumex-titanbrite-flip-chip-led-exhibits-15-increase-in-brightness-over-smt-alternatives.html
    [27] http://www.eenewsautomotive.com/news/flip-chip-led-brighter-and-cooler-conventional-leds
    [28] N. Yamazoe, “New approaches for improving semiconductor gas sensors”, Sens. Actuators B Chem. vol. 5, no.1-4, pp. 7-19 (1991).
    [29] T. SEIYAMA, A. KATO, K. FUJIISHI, M. NAGATANI, A New Detector for Gaseous Components Using Semiconductive Thin Films”, Anal. Chem, vol. 34, no.11, pp. 1502-1503 (1962).
    [30] N.Taguchi, A Metal Oxide Gas Sensor. Japanese Patent, 1962.
    [31] G. Neri, First Fifty Years of Chemoresistive Gas Sensors”, CHEMOSENSORS, vol. 3, no.1, pp. 1-20 (2015).
    [32] M.E. Franke, T.J. Koplin and U. Simon, “Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?”, Small, vol. 2, no.1, pp. 36-50 (2006).
    [33] I.D. Kim, A. Rothschild and H.L. Tuller, “Advances and new directions ingas-sensing devices, Acta Mater, vol. 6, no.1, pp. 974-1000 (2013).
    [34] E. Comini, Metal oxide nano-crystals for gas sensing”, Anal. Chim. Acta, vol. 568, no.1-2, pp. 28-40 (2006).
    [35] D.R. Miller, S.A. Akbar and P.A. Morris, “Nanoscale metal oxide-based heterojunctions for gas sensing: A review”, Sens. Actuators B Chem, vol. 204, pp. 250-272 (2014).
    [36] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, “ Semiconducting metal oxides as sensors for environmentally hazardous gases”, Sens.Actuators B Chem, vol. 106, no.1, pp. 580-591 (2011).
    [37] S. Wang, Y. Kang, L. Wang, H. Zhang, Y. Wang and YS. Wang, “Organic/inorganic hybrid sensors: A review”, Sens. Actuators B Chem, vol. 182, pp. 467-481 (2013).
    [38] A, Mirzaei, J. H. Kim, H. W. Kim and S. S. Kim, “How shell thickness can affect the gas sensing properties of nanostructured materials: Survey of literature”, Sens. Actuator B-Chem, vol. 258, pp. 270-294 (2018).
    [39] S. Itoh, M. Tanaka, T. Tonegwa, M. Taniguchi, K. Otsu, T. Niiyama, K. Tamura, M. Namikawa, Y. Naito, Y. Obara, M. Toriumi, M. Kitada, Y. Takeya, K. Deguchi, S. Kawata, Y. Sato, F. Kataoka, H. Toki, K. Sakurada and T. Yamaura, “Development of field-emission displays”, J. Soc. Inf. Disp, vol. 15, no.12, pp. 1057-1064 (2007).
    [40] WB. Choi, DS. Chung, JH. Kang, HY. Kim, YW. Jin, IT. Han, YH. Lee, JE. Jung, NS. Lee, GS. Park and JM. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett, vol. 75, no.20, pp. 3129-3131 (1999).
    [41] N. S. Xu, Z. S. Wu, S. Z. Deng and Jun Chen, “High-voltage triode flat-panel display using field-emission nanotube-based thin films”, J. Vac. Sci. Technol. B, vol. 19, no.4, pp. 1370-1372 (2001).
    [42] J. Dijon et al., SID International Symposium Digest of Technical Papers, p. 1313 (2007)
    [43] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett, vol. 81, no.19, pp. 3648-3650 (2002).
    [44] C. X. Xu and X. W. Sun, “ Field emission from zinc oxide nanopins” Appl. Phys. Lett, vol. 83, no.18, pp. 3806-3808 (2003).
    [45] C. X. Xu, X. W. Sun, Z. L. Dong, M. B. Yu, T. D. My, X. H. Zhang, S. J. Chua, and T. J. White, “ Zinc oxide nanowires and nanorods fabricated by vapour-phase transport at low temperature” Nanotechnology, vol. 15, no.7, pp. 839-842 (2004).
    [46] J. Chen, S. Z. Deng, N. S. Xu, S. H. Wang, W. X. Zhang, X. G. Wen, and S. H. Yang, “Thermal-enhanced field emission from CuO nanowires due to defect-induced localized states” Appl. Phys. Lett, vol. 5, no.10, pp. 107229 (2015).
    [47] Y. B. Tang, H. T. Cong, Z. G. Zhao and H. M. Cheng, “An array of Eiffel-tower-shape AIN nanotips and its field emission properties” Appl. Phys. Lett. vol. 86, no.23, pp. 233104 (2005).
    [48] K. F. Huo, X. M. Zhang, L. S. Hu, X. J. Sun, J. J. Fu and P. K. Chu, “One-step growth and field emission properties of quasialigned TiO2 nanowire/carbon nanocone core-shell nanostructure arrays on Ti substrates” Appl. Phys. Lett, vol.93, no.1, pp. 013105 (2008).
    [49] J. Chen, Y. Y. Dai, J. Luo, Z. L. Li, S. Z. Deng, J. C. She, and N. S. Xu, “Field emission display device structure based on double-gate driving principle for achieving high brightness using a variety of field emission nanoemitters”Appl. Phys. Lett, vol. 90, no.25, pp. 253105 (2007).
    [50] S. Y. Li, C. Y. Lee, P. Lin and T. Y. Tseng, “Gate-controlled ZnO nanowires for field-emission device application” J. Vac. Sci. Technol. B, vol. 24, no.1, pp. 147-151 (2006).
    [51] R. L. Fink, L. H. Thuesen, V. Ginsberg, D. S. Mao, Y. J. Li, and Z. Yaniv, SID International Symposium Digest of Technical Papers, pp. 1748 (2006).
    [52] X. C. Jiang, T. Herricks and Y. N. Xia, “CuO nanowires can be synthesized by heating copper substrates in air” Nano Lett, vol. 2, no. 12, pp. 1333-1338 (2002).
    [53] YW. Zhu, CH. Sow and JTL. Thong, “Enhanced field emission from CuO nanowire arrays by in situ laser irradiation” J. Appl. Phys, vol. 102, no.11, pp. 114302 (2006).
    [54] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong, and C. H. Sow, “Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films” Nanotechnology, vol 16, no. 1. pp. 88-92 (2005).
    [55] J. Chen, S. M. Zhang, C. Y. Li, X. Liu, S. Z. Deng, and N. S. Xu, Technical Digest of the 19th International Vacuum Nanoelectronic Conference and 50th International Field Emission Symposium, pp.113 (2006).
    [56] K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse and J. Y. Chane-Ching, “Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films” Nanotechnology, vol. 18, no.27, pp. 275607 (2007).
    [57] R. Z. Zhan, J. Chen, S. Z. Deng and N. S. Xu, “Fabrication of gated CuO nanowire field emitter arrays for application in field emission display”, J. Vac. Sci. Technol. B, vol. 28, no. 3, pp. 558-561 (2010).
    [58] https://www.azonano.com/article.aspx?ArticleID=2739
    [59] V. Pott, KE. Moselund, D. Bouvet, L. De Michielis and AM. Ionescu, “Fabrication and Characterization of Gate-All-Around Silicon Nanowires on Bulk Silicon”, IEEE Trans. Nanotechnol, vol. 7, no. 6, pp. 733-744 (2008).
    [60] D. Fujisawa, S. Ogawa, H. Hata, et al., Multi-color imaging with silicon-on-insulator diode uncooled infrared focal plane array using through-hole plasmonic metamaterial absorbers, in: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems, Estoril, pp. 905–908 (2015).
    [61] T.T. Bui, H.P. Tu and M.C. Dang, “DRIE process optimization to fabricate vertical silicon nanowires using gold nanoparticles as masks” ADV NAT SCI-NANOSCI, vol. 6, no.4, pp. 045016 (2015).
    [62] J. Parasuraman, A. Summanwar, F. Marty, P. Basset, DE. Angelescu and T. Bourouina, “Deep reactive ion etching of sub-micrometer trenches with ultra high aspect ratio” Microelectron. Eng, vol. 113, pp. 35-39 (2014).
    [63] JY. Fu, JJ. Li, JH. Yu, RW. Liu, JF. Li, WB. Wang, WW. Wang and DP. Chen, “Improving sidewall roughness by combined RIE-Bosch process”, ‎ Mater. Sci. Semicond. Process, vol. 83, pp. 186-191 (2018).
    [64] https://link.springer.com/chapter/10.1007/978-1-4419-7276-7_9
    [65] https://www.azonano.com/article.aspx?ArticleID=2739
    [66] https://www.sharrettsplating.com/coatings/copper
    [67] KM. Takahashi, “Electroplating copper onto resistive barrier films”, ‎J. Electrochem. Soc, vol. 147, no. 4, pp. 1414-1417 (2000).
    [68] K. Nimmo, “A review of the environmental issues in electronics and the challenge of lead-free soldering,” in Proc. Electron. Goes Green 2000+, Berlin, Germany, pp. 43 (2000).
    [69] K. J. Puttlitz, “Eliminating lead in electronic assemblies,” in Proc. Short Course, 50th Electron. Comp. Technol. Conf., Las Vegas, NV (2000).
    [70] N.-C. Lee, “Tutorial on lead free soldering-The action you don’t want to miss,” in Proc. EMAP’00 Conf., Hong-Kong, Nov (2000).
    [71] SY. Jang, J. Wolf, O. Ehrmann, H. Gloor, H. Reichl and KW. Paik, “Pb-free Sn/3.5Ag electroplating bumping process and under bump metallization (UBM)”, ‎IEEE Trans. Adv. Packag, vol. 25, no. 3, pp. 193-202 (2002).
    [72] E.Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero and G. Sberveglieri, “Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors”, Prog. Mater. Sci, vol. 54, no. 1, pp. 1-67 (2009).
    [73] JB. Liang, N. Kishi, T. Soga and T. Jimbo, “The Synthesis of Highly Aligned Cupric Oxide Nanowires by Heating Copper Foil”, J. Nanomater, pp. 268508 (2011).
    [74] R. Mema, L. Yuan, QT. Du, YQ. Wang and GW. Zhou, “Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper”, ‎ Chem. Phys. Lett, vol. 512, no. 1-3, pp. 87-91 (2011).
    [75] Chong, W. Cheung, Lau and K. May, “Performance Enhancements of Flip-Chip Light-Emitting Diodes with High-Density n-Type Point-Contacts”, IEEE Electron Device Lett, vol. 35, no. 10, pp. 1049-1051 (2014).
    [76] L. Jiajiang, Z. Chenju, C. Quan, Z. Shengjun and L. Sheng, Phys. Status Solidi A-Appl. Mat.213, 3150 (2016).
    [77] W. JJ, S. DA, K. MR, O. JJ, L. MJ, C. G, S. YC, L. C, M. PS, S. S, G. W, G. NF, K. RS and S. SA, Appl. Phys. Lett.78, 3379 (2001).
    [78] S. J. Chang, W. S. Chen, S. C. Shei, C. T. Kuo, T. K. Ko, C. F. Shen, J. M. Tsai, Wei-Chi Lai, Jinn-Kong Sheu, and A. J. Lin, “High-Brightness InGaN–GaN Power Flip-Chip LEDs,” Journal Of Lightwave Technology, vol. 27, no. 12, pp. 1985-1989, (2009).
    [79] L. Yin, Y. Bai1, T. Nan, and J. Zhang, “Performance enhancement of gallium-nitride-based flip-chip light-emitting diode with through-via structure,” Physica Status Solidi A-Applications And Materials Science., vol. 212, no. 8, pp. 1725-1730 (2015).
    [80] Y. W. Yen, H.W. Tseng, K. Zeng, S. J. Wang, and C.Y. Liu, “Cross-Interaction Between Au/Sn and Cu/Sn Interfacial Reactions,” Journal of ELECTRONIC MATERIALS, vol. 38, no. 11, pp. 2257-2263 (2009).
    [81] M. Bigas and E. Cabruja, “Characterisation of electroplated Sn/Ag solder bumps,” Microelectronics Journal, vol. 37, no. 4, pp. 308-316 (2006).
    [82] S. S. Ha, J. M. Yang, and S. B. Jung, “Electromigration Behavior of through-Si-via (TSV) Interconnect for 3-D Flip Chip Packaging,” Materials Transactions, vol. 51, no. 5, pp. 1020-1027 (2010).
    [83] S. P. Shen, W. H. Chen, W. P. Dow, T. Kamitamari, E. Cheng, J. Y. Lin, and W. C. Chang, “Copper seed layer repair using an electroplating process for through silicon via metallization,” Microelectronic Engineering., vol. 105, pp. 25-30 (2013).
    [84] T. H. Tsai, J. H. Huang, “Electrochemical investigations for copper electrodeposition of through-silicon via,” Microelectronic Engineering, vol. 88, no. 2, pp. 195-199 (2011).
    [85] S. C. Hong, D. H. Jung, W. G. Lee, W. Kim and Jae P. Jung, IEEE Trans. Compon. Pack. Manuf. Technol.3, 574 (2013).
    [86] H, Ezawa, M, Miyata, S, Honma, H, Inoue, T, Tokuoka, J, Yoshioka and M, Tsujimura, “Eutectic sn-ag solder bump process for ULSI flip chip technology, ” IEEE Trans. Electron. Packag. Manuf, vol. 24, no.4, pp. 275-281 (2001).
    [87] B. Neveu, F. Lallemand, G. Poupon and Z. Mekhalif, “Electrodeposition of Pb-free Sn alloys in pulsed current,” Appl. Surf. Sci, vol. 252, no.10, pp. 3561-3573 (2006).
    [88] S. Tachi, K. Tsujimoto and S. Okudaira, “Low‐temperature reactive ion etching and microwave plasma etching of silicon,”Appl. Phys. Lett, vol. 52, no.8, pp. 616-618 (1988).
    [89] Z. Wanga, F. Jianga, D.Q. Yu and W.Q. Zhang, “Si Etching for TSV Formation,” ECS Transactions, vol. 60, no.1, pp. 407-412 (2014).
    [90] C. H. Chiang, L. M. Kuo, Y. C. Hu, W. C. Huang, C. T. Ko and K. N. Chen, “Sealing Bump With Bottom-Up Cu TSV Plating Fabrication in 3-D Integration Scheme, ”IEEE Electron Device Letters, vol. 34, no.5, pp. 671-673 (2013).
    [91] B. H. Kwak, M. H. Jeong, J. W. Kim, B. Lee, H. J. Lee, and Y. B. Park, “Correlations between interfacial reactions and bonding strengths of Cu/Sn/Cu pillar bump, ” Microelectronic Engineering, vol. 89, pp. 65-69 (2012).
    [92] L. G. Hou, J. Y. Fu, J. H. Wang and N. Gong, Microelectron. Eng.153, 110 (2016).
    [93] S. J. Chang, W. H. Lin, and W. S. Chen, “Cascaded GaN Light-Emitting Diodes with Hybrid Tunnel Junction Layers, ”Microelectronics Reliability, vol. 51, No. 8 (2015).
    [94] DE. Mentley; “State of flat-panel display technology and future trends,” PROCEEDINGS OF THE IEEE, vol. 90, no. 4, pp. 453-459 (2002).
    [95] L Y. Cho and T. Daim, FORESIGHT.18, 117 (2016). Y. Cho and T. Daim; “OLED TV technology forecasting using technology mining and the Fisher-Pry diffusion model,” FORESIGHT, vol. 18, no. 2, pp. 117-137 (2016).
    [96] H. J. Chiu, Y. K. Lo, T. P. Lee, S. C. Mou and H.M. Huang; “Design of an RGB LED Backlight Circuit for Liquid Crystal Display Panels,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 56, no. 7, pp. 9635-9665 (2009).
    [97] J. Q. Lu; “3-D Hyperintegration and Packaging Technologies for Micro-Nano Systems,” PROCEEDINGS OF THE IEEE, vol. 97, no. 1, pp. 18-30 (2009).
    [98] C. L. Lu, S. J. Chang, W. S. Chen and T. J Hsueh; “Through-Silicon via Submount for Flip-Chip LEDs,” ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol. 6, no. 1, pp. R159-R162 (2017).
    [99] C. H. Chiang, L. M. Kuo, Y. C. Hu, W. C. Huang, C. T. Ko and K. N. Chen, IEEE Electron Device Lett.34, 671 (2013).
    [100] P. Dixit, S. Vahanen, J. Salonen, and P. Monnoyer, ECS J. Solid State Sci. Technol.6, P107 (2012).
    [101] B. Neveu, F. Lallemand, G. Poupon and Z. Mekhalif, “Electrodeposition of Pb-free Sn alloys in pulsed current,” Appl. Surf. Sci, vol. 252, no.10, pp. 3561-3573 (2006).
    [102] L. G. Hou, J. Y. Fu, J. H. Wang and N. Gong, Microelectron. Eng.153, 110 (2016).
    [103] Y. Cui and C. M. Lieber, Science 291, 851 (2001).
    [104] X. F. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature (London) 409, 66 (2001).
    [105] H. T. Hsueh, T. J. Hsueh, S. J. Chang, Senior Member, IEEE, T. Y. Tsai, F. Y. Hung, S. P. Chang, W. Y. Weng, and B. T. Dai, “CuO-Nanowire Field Emitter Prepared on Glass Substrate”, IEEE TRANSACTIONS ON NANOTECHNOLOGY, vol. 10, no. 5, pp. 1161-1165 (2011).
    [106] X. C. Jiang, T. Herricks and Y.N Xia, “CuO nanowires can be synthesized by heating copper substrates in air”, NANO LETTERS, vol. 2, no. 12, pp. 1333-1338 (2002).
    [107] W. H. Lee, T. K. Lee and C. Y. Lo, “Environmentally-friendly, Pb-free Cu front electrode for Si-based solar cell applications”, JOURNAL OF ALLOYS AND COMPOUNDS, vol. 686, pp. 339-346 (2016).
    [108] G. A. Bordovskii, N. I. Anisimova, A. V. Marchenko, T. Y. Rabchanova, P. P. Sereginand and E.A Tomil'tsev, “Hyperfine interactions of copper ions in the structure of high-temperature superconductors”, GLASS PHYSICS AND CHEMISTRY, vol. 40, no. 3, pp. 333-340 (2014).
    [109] L. Li, Y. Hu, D. Y. Deng, H. J. Song and Y. Lv, “Highly sensitive cataluminescence gas sensors for 2-butanone based on g-C3N4 sheets decorated with CuO nanoparticles”, ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 408, no. 30, pp. 8831-8841 (2016).
    [110] S. Park, Z. Cai, J. Lee, J. I. Yoon and S. P. Chang, “Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles”, MATERIALS LETTERS, vol. 181, pp. 231-235 (2016).
    [111] C. M. Tang , Y. B. Wang , R. H. Yao, H. L. Ning, W. Q. Qiu and Z. W. Liu, “Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique”, NANOTECHNOLOGY, vol. 27, no. 39 (2016).
    [112] S. M. Wu, F. Li, L. J. Zhang and Z. Li, “Enhanced field emission properties of CuO nanoribbons decorated with Ag nanoparticles”, MATERIALS LETTERS, vol. 171, pp. 220-223 (2016).
    [113] A. E. RAKHSHANI,“PREPARATION, CHARACTERISTICS AND PHOTOVOLTAIC PROPERTIES OF CUPROUS-OXIDE - A REVIEW” , SOLID-STATE ELECTRONICS, vol. 29, no. 1, pp. 7-17 (1986).
    [114] B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, THIN SOLID FILMS, vol. 396, no. 1-2, pp. 90-96 (2001).
    [115] X. C. Jiang, T. Herricks and Y. N. Xia, “CuO nanowires can be synthesized by heating copper substrates in air”, NANO LETTERS, vol. 2, no. 12, pp. 1333-1338 (2002).
    [116] W. X. Zhang, X. G. Wen, S. H. Yang, Y. Berta and Z. L. Wang, “Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature” , Microelectronic Engineering, vol. 15, no. 10, pp. 822 (2003).
    [117] X. G. Wen, W. X. Zhang and S. H. Yang, “Synthesis of Cu(OH)(2) and CuO nanoribbon arrays on a copper surface” , LANGMUIR, vol. 19, no. 14, pp. 5898-5903 (2003).
    [118] X. C. Wang, Z. H. Zhao, Q. S. Wu, Y. Y. Li and Y. H. Wang, “A Garnet-Based Ca2YZr2Al3O12:Eu3+ Red-Emitting Phosphor for n-UV Light Emitting Diodes and Field Emission Displays : Electronic Structure and Luminescence Properties” , INORGANIC CHEMISTRY, vol. 55, no. 21, pp. 11072-11077 (2016).
    [119] Y. X. Cao, X. Ding and Y. H. Wang, “A Single-Phase Phosphor NaLa9 (GeO4)(6)O-2: Tm3+, Dy3+ for Near Ultraviolet-White LED and Field-Emission Display” , LANGMUIR, vol. 99, no. 11, pp. 3696-3704 (2016).
    [120] Y. H. Cao, W. G. Ning and L. Luo, “Wafer-Level Package With Simultaneous TSV Connection and Cavity Hermetic Sealing by Solder Bonding for MEMS Device”, IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, vol. 32, no. 3, pp. 125-132 (2009).
    [121] P. Dixit, S. Vahanen, J. Salonen and P. Monnoyer, “ Effect of Process Gases on Fabricating Tapered Through-Silicon vias by Continuous SF6/O-2/Ar Plasma Etching”, ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol. 1, no. 3, pp. P107-P116 (2012).
    [122] C. L. Hsu, J. Y. Tsai and T. J. Hsueh, “ Novel field emission structure of CuO/Cu2O composite nanowires based on copper through silicon via technology”, RSC ADVANCES, vol. 5, no. 43, pp. 33762-33766 (2015).
    [123] C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang and R. Gao “ Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” SENSORS, vol. 10, no. 3, pp. 2088-2106 (2010).
    [124] F. Zee and J. W. Judy, “ Micromachined polymer-based chemical gas sensor array,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 72, no. 2, pp. 120-128 (2001).
    [125] X. Liu, S. T. Cheng, H. Liu, S. Sha, D. Q. Zhang and H. S. Ning, “ A Survey on Gas Sensing Technology,” SENSORS , vol. 12, no. 7, pp. 9635-9665 (2012).
    [126] M. L. Yin, Y. Yao, H. B. Fan and S. Z. Liu, “WO3-SnO2 nanosheet composites: Hydrothermal synthesis and gas sensing mechanism,” JOURNAL OF ALLOYS AND COMPOUNDS, vol. 736, pp. 322-331 (2018).
    [127] A. Alberti, L. Renna, S. Sanzaro, E. Smecca, G. Mannino, C. Bongiorno, C. Galati, L. Gervasi, A. Santangelo and A. La Magna, “ Innovative spongy TiO2 layers for gas detection at low working temperature,” SENSORS AND ACTUATORS B-CHEMICAL, vol. 259, pp. 658-667 (2018).
    [128] L. Xu, Z. F. Dai, G. T. Duan, L. F. Guo, Y. Wang, H. Zhou, Y. X. Liu, W. P. Cai, Y. L Wang and T. Li, “ Micro/Nano Gas Sensors: A New Strategy Towards In-Situ Wafer-Level Fabrication of High-Performance Gas Sensing Chips,” SCIENTIFIC REPORTS, vol. 5, no. 10507 (2015).
    [129] S. P. Chang and K. Y. Chen, “UV Illumination Room-Temperature ZnO Nanoparticle Ethanol Gas Sensors,” INTERNATIONAL SCHOLARLY RESEARCH NOTICES, vol. 2012, pp. 5 (2012).
    [130] C. H. Lin, S. J. Chang and T. J. Hsueh, “A WO3 Nanoparticles NO Gas Sensor Prepared by Hot-Wire CVD,” IEEE ELECTRON DEVICE LETTERS, vol. 38, no. 2, pp. 266-269 (2017).
    [131] T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin and I. C. Chen, “ZnO Nanotube Ethanol Gas Sensors,” JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 155, no. 9, pp. K152-K155 (2008).

    無法下載圖示 校內:2024-01-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE