| 研究生: |
周仕凱 Chou, Shih-Kai |
|---|---|
| 論文名稱: |
以鋅原紫質合成膽紅素模版高分子膜對膽紅素螢光感測之探討 Bilirubin imprinted polymer film synthesized from zinc(II) protoporphyrin for the fluorescent sensing of bilirubin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 分子模版高分子 、鋅原紫質 、膽紅素 、膽綠素 、配位 |
| 外文關鍵詞: | Molecularly imprinted polymers, zinc(II) protoporphyrin, bilirubin, biliverdin, coordination |
| 相關次數: | 點閱:82 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
提升的重要角色,並且證實雙單體具有輔助辨識膽紅素的效果。最終,以 60°c 下聚合 6 小時,且含有 ZnPP 和 MAA 兩種單體的 74~149 μm 的高分子顆粒 (PZM) 作後續測試。
搭配顆粒沉降實驗說明高分子顆粒的沉降速率。最後,以 6 μL 含 AIBN 的預聚合液滴在 benzophenone 處理過的氧化鋁板,去聚合成可螢光感測的高分子膜版,同時搭配預聚合液量和起始劑有無的調整,可以得到不錯的吸附結果。結果證實,這樣的膜版有和顆粒不同的螢光行為,但是都對膽紅素展現好的親和性吸附,會受到血清或膽綠素相似物的些微干擾,但是仍能保持好的感測效果,在血清中對 10 mg/dL 膽紅素的模印因子為 3.04 ± 0.154。
This study shows that to introduce a fluorescent compound as a functional monomer, zinc(II) porphyrin (ZnPP), into the poly(MAA-EGDMA) poly(methacrylic acid-co-ethylene glycol dimethacrylate), can form a bilirubin-imprinted material by thermal polymerization and a subsequent extraction step. Coordination between bilirubin and ZnPP was confirmed from the spectrophotometric titration analysis resulting in the Soret band of ZnPP a significant wavelength shift, especially the concentration of bilirubin in 10-4~10-2 M which falls within the set sensing range (1~10 mg/dL). It was found that ZnPP played an important role in enhancing the adsorption capacity comparing the amount of adsorption and the size of imprinting factor from 10 mg/dL bilirubin adsorption by a series of different-monomer-containing synthesized bilirubin imprinted polymers at 30°c for 1 hour. And two functional monomers were confirmed having the effect of assisting in the bilirubin identification. Finally, polymer particles containing ZnPP and MAA as monomers (PZM) were polymerized at 60°c for 6 hours and 74~149 μm was chosen for subsequent testing.
The sedimentation rate of the polymer particles was carried out by the particle settling experiments. Finally, 6 μL of AIBN-containing pre-polymerization solution was dropped on a benzophenone-pre-treated alumina oxide plate to form a fluorescent-sensible polymer film. With or without the adjustment of the amount of pre-polymerization solution and the existence of initiator, the good adsorption results towards bilirubin can be obtained. As a result, it was confirmed that such a plate had a different fluorescence behavior from that of the particles, but both exhibited good affinity for bilirubin adsorption, and were slightly disturbed by serum or bilivedin analogs, but still maintain a good sensing effect. The imprinting factor for 10 mg/dL bilirubin in serum was 3.04 ± 0.154.
1. D. Watson, J. A. Rogers. A study of six representative methods of plasma bilirubin analysis. J. Clin. Pathol. 1961, 14, 271-278.
2. B. Rolinski, H. Küster, B. Ugele, R. Gruber, K. Horn. Total bilirubin measurement by photometry on a blood gas analyzer: potential for use in neonatal testing at the point of care. Clin. Chem. 2001, 47, 10, 1845-1847.
3.C. J. Mullon, R. Langer. Determination of conjugated and total bilirubin in serum of neonates, with use of bilirubin oxidase. Clin. Chem. 1987, 33:1822-1825.
4. M. A. Rahman, K. S. Lee, D. S. Park, M. S. Won, Y.-B. Shim. An amperometric bilirubin biosensor based on a conductive poly-terthiophene-Mn(II) complex. Biosensors and Bioelectronics 2008, 23:857-864.
5. M. J. Song, D. H. Yun, N. K. Min, S. I. Hong. Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. Journal of Bioscience and Bioengineering 2007, 103, 32-37.
6. G. Vlatakis, L. Andersson, R. Müller, K. Mosbach. Drug assay using antibody mimics made by molecular imprinting. Nature 1993. 361, 645-647.
7. M. J. Syu, J. H. Deng, Y. M. Nian. Towards bilirubin imprinted poly(methacrylic acid-co- ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin. Analytica Chimica Acta 2004, 504, 1, 167-177.
8. A. H. Wu, M. J. Syu. Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/QCM/FIA system. Biosensors and Bioelectronics 2006, 21, 2345-2353.
9. 鄭易修,以共價合成單體以製作模版高分子對膽紅素之電化學感測分析。國立成功大學化工系碩士論文,2010。
10. 石家銘,以分子模版 poly(AMPS-co-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測。國立成功大學化工系碩士論文,2008。
11. 楊竣翔,以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之電子/ 質子傳導方式進行對膽紅素之電化學感測。國立成功大學化工系碩士論文,2007。
12. K. Karim, F. Breton, R. Rouillon, E. V. Piletska, A. Guerreiro, I. Chianella, S. A. Piletsky. How to find effective functional monomers for effective molecularly imprinted polymers? Advanced Drug Delivery Reviews 2005, 57, 1795-1808.
13. Y. Fujii, K. Matsutani, K. Kikuchi. Formation of a specific coordination cavity for a chiral amino-acid by template synthesis of a polymer Schiff base cobalt(III) Complex. J. Chem. Soc. Chem. Commun. 1985, 7, 415-417.
14. T. Mizutani, T. Kurahashi, T. Murakami, N. Matsumi, H. Ogoshi. Molecular recognition of carbohydrates by zinc porphyrins: lewis acid/lewis base combinations as a dominant factor for their selectivity. J. Am. Chem. Soc. 1997, 119, 8991-9001.
15. http://www.eclinpath.com/chemistry/liver/cholestasis/bilirubin/
16. D. E. Baranano, M. Rao, C. D. Ferris, S. H. Snyder. Biliverdin reductase: A major physiologic cytoprotectant. Proceedings of the National Academy of Sciences 2002, 99, 16093-16098.
17. A. S. Cheifetz, Oxford American Handbook of Gastroenterology and Hepatology. Oxford: Oxford University Press, USA. p. 165. ISBN 0199830126. 2010.
18. T. W. Sedlak, S. H. Snyder. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004, 113, 1776-1782.
19. T. W. Kao, C. H. Chou, C. C. Wang, C. C. Chou, J. Hu, W. L. Chen. Associations between serum total bilirubin levels and functional dependence in the elderly. Internal Medicine Journal 2012, 42, 1199-1207.
20. L. Novotný, L. Vítek. Inverse relationship between serum bilirubin and atherosclerosis in men: A meta-analysis of published studies. Experimental Biology and Medicine 2003, 228, 568-571.
21. T. Dorner, B. Knipp, D. A. Lightner. Heteronuclear NOE analysis of bilirubin solution conformation and intramolecular hydrogen bonding. Tetrahedron 1997, 53, 2697-2716.
22. 胡淑賢,膽紅素及其光化學,大學化學,第八卷,第三期,29-33 頁,1993年6月。
23. R. A. McPherson, MD, M. R. Pincus, MD, PhD, Henry's clinical diagnosis and management by laboratory methods. 22nd ed. Philadelphia, PA: Elsevier Saunders; 2011: appendix 7.
24. B. T. Doumas, B. W. Perry, E. A. Sasse, J. V. Straumfjord. Standardization in bilirubin assays: evaluation of selected methods and stability of bilirubin solutions. Clin. Chem. 1997, 19, 948-993.
25. S. Murao, N. A. Tanaka. New emzyme “bilirubin oxidase” produced by myrothecium verrucaria MT-1. Agric. Biol. Chem. 1981, 45, 2383-2384.
26. E. Sykes, E. Epstein. Laboratory measurement of bilirubin. Clinics in Perinatology 1990, 17, 397-415.
G. Wulff. Enzyme-like catalysis by molecularly imprinted 27. polymers. Chem. Rev. 2002, 102, 1-27.
28. A. L. Jenkins, O. M. Uy, G. M. Murray. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent soman in water. Anal. Chem. 1999, 71, 373-378.
29. R. Levi, S. McNiven, S. A. Piletsky, S. H. Cheong, K. Yano, I. Karube. Optical detection of chloramphenicol using molecularly imprinted polymers. Anal. Chem. 1997, 69, 2017-2021.
30. M. Glad, P. Reinholdsson, K. Mosbach. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. React Polym. 1995, 25, 47-54.
31. L. Schweitz, L. I. Andersson, S. Nilsson. Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics. J. Chromatogr. A 1997, 792, 401-409.
32. O. Brüggemann, K. Haupt, L. Ye, E. Yilmaz, K. Mosbach. New configurations and applications of molecularly imprinted polymers. J. Chromatogr. A 2000, 889, 15-24.
33. G. Wulff. Molecular imprinting in cross-linked materials with the aid of molecular templates- a way towards artificial antibodies. Angew Chem. Int. Ed. Engl. 1995, 34, 1812-1832.
34. H. Shi, W. B. Tsai, M. D. Garrison, S. Ferrari, B. D. Ratner. Template-imprinted nanostructured surfaces for protein recognition. Nature 1999, 398, 593-597.
35. P. K. Dhal, F. H. Arnold. Metal-coordination interactions in the template-mediated synthesis of substrate-selective polymers: recognition of bis(imidazole) substrates by copper (II) iminodiacetate containing polymers. Macromolecules 1992, 25, 7051-7059.
36. A. G. Mayes, K. Mosbach. Molecularly imprinted polymer beads : suspension polymer- ization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 1996, 68, 3769-3774.
37. S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube, Yu. P. Parhometz, A. V. El'skaya. Atrazine sensing by molecularly imprinted membranes. Biosensors and Bioelectronics 1995, 10, 959-964.
38. T. A. Sergeyeva, S. A. Piletsky, T. L. Panasyuk, A. V. El’skaya, A. A. Brovko, E. A. Slinchenko, L. M. Sergeeva. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 1999,124, 331-334.
39. S. A. Piletsky, H. S. Andersson, I. A. Nicholis. On the role of electrostatic interactions in the enantioselective recognition of phenylalanine in molecularly imprinted polymers incorporating -cyclodextrin. Polymer Journal 2005, 37, 793-796.
40. D. Kriz, O. Ramstrom, A. Svensson, K. Mosbach. A biomimetic sensor based on a molecularly imprinted polymer as a recognition element combined with fiber-optic detection. Anal. Chem. 1995, 67, 2142-2144.
41. F. L. Dickert, S. Thierer. Molecularly imprinted polymers for optochemical sensors. Adv. Mater. 1996, 8, 987-990.
42. F. L. Dickert, M. Tortschanoff, W. Bulst, G. Fischerauer. Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal. Chem. 1999, 71, 4559-4563.
43. S. H. Gao, W. Wang, B. H.Wang. Building fluorescent sensors for carbohydrates using template-directed polymerizations. Bioorg. Chem. 2001, 29, 308-320.
44. Y. Liao, W. Wang, B. H. Wang. Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for L-tryptophan. Bioorg. Chem. 1999, 27, 463-476.
45. H. Kubo, N. Yoshioka, T. Takeuchi. Fluorescent imprinted polymers prepared with 2-acrylamido quinoline as a signaling monomer. Org. Lett. 2005, 7, 359-362.
46. M. Béra-Abérem, H.-A. Ho, M. Leclerc. Functional polythiophenes as optical chemo- and biosensors. Tetrahedron 2004, 60, 11169-11173.
47. M. K. P. Leung, C. F. Chow, M. H. W. Lam. A sol–gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid. J. Mater. Chem. 2001, 11, 2985-2991.
48. M. Gouterman. Spectra of porphyrins. Journal of Molecular Spectroscopy 1961, 6, 138-163.
49. M. Y. Choi, J. A. Pollard, M. A. Webb, J. L. Mchale. Counterion-dependent excitonic spectra of tetra(p-carboxyphenyl)porphyrin aggregates in acidic aqueous solution. J. Am. Chem. Soc. 2003, 125, 810-820.
50. D. L. Akins, S. Ozcelik, H. R. Zhu, C. Guo. Fluorescence decay kinetics and structure of aggregated tetrakis(p-sulfonatophenyl)porphyrin. J. Phys. Chem. 1996, 100, 14390-14396.
51. Y. H. Zhang, Y. Wu. Different J-type aggregates of meso-tetrakis(4-hydroxyphenyl)por- -phyrin (H2THPP) formed in different solvents. Chinese Chemical Letters 2005, 4, 534-536.
52. G. S. S. Saini. Resonance Raman study of free-base tetraphenylporphine and its dication. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006, 64, 981-986.
53. R. F. Pasternack, C. Bustamante, P. J. Collings, A. Giannetto, E. J. Gibbs. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J. Am. Chem. Soc. 1993, 115, 5393-5399.
54. D. M. Chen, Y. H. Zhang, T. J. He, F. C. Liu. Raman and UV–visible absorption spectra of ion-paired aggregates of copper porphyrins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2002, 58, 2291-2297.
55. D. A. Skoog, F. J. Holler, T. A. Nieman. Principle of instrumental analysis. Fifth edition, Saunders College, 1998, 355-376.
56. S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien, S. J. Lippard. Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. J. Am. Chem. Soc. 2001, 123, 7831-7841.
57. J. Lei, J. Fan, C. Z. Yu, L. Y. Zhang, S. Y. Jiang, B. Tu, D. Y. Zhao. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous and Mesoporous Materials 2004, 73, 121-128.
58. D. Batra, K. J. Shea. Combinatorial methods in molecular imprinting. Curr. Opin. Chem. Biol. 2003, 7, 434-442.
59. S. Subrahmanyam, S. A. Piletsky, E. V. Piletska, B. N. Chen, K. Karim, A. P. F. Turner. 'Biteand-switch' approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens. Bioelectron. 2001, 16, 631-637.