簡易檢索 / 詳目顯示

研究生: 高培堯
Kao, Pei-Yao
論文名稱: Ca,Zr與Zn添加對鎂基負極材料組織與充放電特性研究
Effects of Adding Ca, Zr and Zn on Microstructure and Charge-Discharge Characteristics of Mg Alloy Anode Materials
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 鎂電池鎂合金蒸鍍充放電負極
外文關鍵詞: Magnesium battery, Magnesium alloy, Thermal evaporation, Charge-discharge, Anode
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球致力於推動電動汽機車等產業,其中儲能系統、智慧電網等亦相繼被討論,鋰離子電池作為上述應用的主要動力來源,金屬與合金負極材料相比於主流碳系材料具有更高的體積能量密度。本研究選用鎂作為電池負極材料,具有較高的理論電容量及低成本優勢,但在多次反應後因體積膨脹效應導致電池循環壽命不佳。基於此,本研究藉由添加鈣、鋯與鋅形成Mg-Ca、Mg-Zr及Mg-Zn合金,並以粉末塗佈法製備粉末電極,探討在形成金屬間化合物、非活性複合相與活性複合相三種不同機制下,對於體積膨脹效應的抑制效果及高溫環境下的充放電機制。此外,針對上述三者中循環表現最佳者,進一步以熱蒸鍍法製備薄膜電極,釐清相關材料本質之電化學反應機制,並評估Mg-C電池系統之可行性。
    實驗結果顯示,Mg-Ca合金中Mg2Ca能有效減緩循環充放電過程中鎂基地體積膨脹所導致的結構變形,而有最高的電容量與循環壽命。然而,Mg-Zr合金因首次循環中,電極表面固態電解質介面 (SEI)不易生成導致介面阻抗較高,鋰離子難以嵌脫使得電容量表現不佳,而Mg-Zn合金以不同反應電位的活性相來降低反應速率,對減緩充放體積膨脹的效果相對不佳。利用熱蒸鍍法所製備的Mg-Ca薄膜電極在無添加導電材料與黏合劑的情形下,活性材料佔比高,並有較大的反應表面積,使得電極材料能高度鋰化,大幅提升電容量。此外,大量鋰離子嵌脫也放大體積膨脹效應,使得55oC高溫下電極微觀組織呈現破碎形貌,當溫度升至85oC時,電極更將大幅劣化而失效。由循環伏安 (CV)分析結果可知高溫充放有助於SEI層生成,並且透過交流阻抗分析 (EIS)確認該SEI層能降低電極與電解質介面阻抗,提高鋰離子對電極材料的嵌入數目。最後,本研究將Mg-Ca薄膜電極導入Mg-C電池系統,發現在不同溫度下 (25/55oC)保有250-350 mAh/g的電容量,確立Mg-C電池系統的工業應用可行性。

    In recent years, electric vehicles have become popular, and lithium-ion batteries have been the main driving force for the above applications. Magnesium as an anode material has a high theoretical capacity and low cost, but the cycle life is poor due to the volume expansion effect. Based on this, this study compared the charge-discharge performance and cycle stability of Mg-Ca, Mg-Zr and Mg-Zn alloy electrodes at different temperatures. In addition, a Mg-Ca thin film electrode is prepared by thermal evaporation, and its electrochemical reaction mechanism was discussed. The results show that the Mg2Ca phase in the Mg-Ca alloy can effectively alleviate the structural deformation caused by the volume expansion of the magnesium base during cyclic charging and discharging, and has the highest capacity and good cycle life. However, due to the unstable formation of the solid electrolyte interface (SEI) on the Mg-Zr alloy electrode surface during the first cycle, the interface impedance is high and lithium ions are difficult to insert. The effect of the Mg-Zn alloy electrode using different reaction potentials of different active phases to slow down the volume expansion ratio is relatively poor. The Mg-Ca thin film electrode prepared by the thermal evaporation method has a high proportion of active materials, so that the electrode has higher capacity. From the results of cyclic voltammetry (CV), it is known that high temperature contributes to the formation of the SEI layer, and it is confirmed by electrochemical impedance spectroscopy (EIS) that the SEI layer can reduce the electrode-electrolyte interface impedance and improve lithium ion conductivity. Finally, this study imports the Mg-Ca thin film electrode into the Mg-C battery system and show that it has a capacity of 250-350 mAh/g at different temperatures (25/55°C), indicating that the magnesium battery has industrial application feasibility.

    中文摘要 I 英文摘要 III 致謝 XX 總目錄 XXII 圖目錄 XXV 表目錄 XXIX 第一章 前言 1 第二章 文獻回顧 3 2-1 鋰離子二次電池與工作原理 3 2-2 鋰離子電池之負極材料 3 2-3 鎂基負極材料 5 2-4 鎂-鈣、鎂-鋯、鎂-鋅負極材料 6 2-4-1 鎂-鈣合金 6 2-4-2 鎂-鋯合金 6 2-4-3 鎂-鋅合金 7 2-5 電極製程 7 2-5-1 混漿塗佈粉末電極製程 7 2-5-2 熱蒸鍍薄膜電極製程 8 2-5-3 濺鍍薄膜電極製程 8 2-6 高溫充放電機制 9 2-7 研究目的 9 第三章 實驗步驟與方法 16 3-1 實驗流程概述 16 3-2 實驗粉末與電極製備 16 3-2-1 混漿塗佈電極製備 17 3-2-2 熱蒸鍍電極製備 17 3-3 電極材料微觀組織分析 18 3-3-1 低掠角X-ray繞射分析 18 3-3-2 掃描式電子顯微鏡與EDS分析 18 3-4 電池組裝與測試 18 3-4-1 充放電測試 19 3-4-2 循環伏安分析 19 3-4-3 電化學阻抗分析 19 3-4-4 傅立葉轉換紅外線光譜分析 20 第四章 結果與討論 26 4-1 鎂-鈣、鎂-鋯、鎂-鋅合金粉末塗佈電極特性 26 4-1-1 鎂合金粉末電極微觀結構與元素成分分析 26 4-1-2 鎂合金粉末電極充放電循環特性 26 4-1-3 鎂合金粉末電極X-ray繞射分析 29 4-1-4 鎂合金粉末電極循環伏安分析 30 4-1-5 鎂合金粉末電極交流阻抗分析 33 4-2 熱蒸鍍鎂-鈣薄膜電極特性 34 4-2-1 鎂-鈣薄膜電極微觀結構與元素成分分析 34 4-2-2 鎂-鈣薄膜電極充放電循環特性 35 4-2-3 鎂-鈣薄膜電極X-ray繞射分析 37 4-2-4 鎂-鈣薄膜電極循環伏安分析 37 4-2-5 鎂-鈣薄膜電極交流阻抗分析 39 4-2-6 鎂-鈣薄膜電極FTIR光學結構分析 39 4-3 鎂-鈣電極充放電機制探討 40 第五章 結論 81 參考文獻 82

    1. G. N. Lewis and F. G. Keyes, The potential of the lithium electrode. Journal of the American Chemical Society, 1913. 35: p. 340-344.
    2. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    3. H. Abe, K. Zaghib, K. Tatsumi, and S. Higuchi, Performance of lithium-ion rechargeable batteries: graphite whisker/electrolyte/LiCoO2 rocking-chair system. Journal of Power Sources, 1995. 54(2): p. 236-239.
    4. J. O. Besenhard and H. P. Fritz, Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974. 53(2): p. 329-333.
    5. S. Flandrois and B. Simon, Carbon materials for lithium-ion rechargeable batteries. Carbon, 1999. 37(2): p. 165-180.
    6. K. Sawai, Y. Iwakoshi, and T. Ohzuku, Carbon materials for lithium-ion (shuttlecock) cells. Solid State Ionics, 1994. 69(3): p. 273-283.
    7. M. R. Palacín, Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
    8. C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
    9. A. J. Leenheer, K. L. Jungjohann, K. R. Zavadil, and C. T. Harris, Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy. ACS Nano, 2016. 10(6): p. 5670-5678.
    10. Q. Liu, S. Zhou, C. Tang, Q. Zhai, X. Zhang, and R. Wang, Li-B Alloy as an Anode Material for Stable and Long Life Lithium Metal Batteries. Energies, 2018. 11(10): p. 2512.
    11. G. J. Jeong, Y. U. Kim, H. J. Sohn, and T. Kang, Particulate-reinforced Al-based composite material for anode in lithium secondary batteries. Journal of Power Sources, 2001. 101(2): p. 201-205.
    12. M. J. Lindsay, G. X. Wang, and H. K. Liu, Al-based anode materials for Li-ion batteries. Journal of Power Sources, 2003. 119-121: p. 84-87.
    13. Q.-Y. Li, Q.-C. Pan, G.-H. Yang, X.-L. Lin, Z.-X. Yan, H.-Q. Wang, and Y.-G. Huang, Facile synthesis of a novel Al-based composite as an anode for lithium-ion batteries. RSC Advances, 2015. 5(104): p. 85338-85343.
    14. A. Eftekhari and P. Corrochano, Electrochemical energy storage by aluminum as a lightweight and cheap anode/charge carrier. Sustainable Energy & Fuels, 2017. 1(6): p. 1246-1264.
    15. T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. Journal of the Electrochemical Society, 2004. 151(6): p. A838-A842.
    16. N. Ding, J. Xu, Y. X. Yao, G. Wegner, X. Fang, C. H. Chen, and I. Lieberwirth, Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics, 2009. 180(2): p. 222-225.
    17. M. Su, Z. Wang, H. Guo, X. Li, S. Huang, and L. Gan, Silicon, flake graphite and phenolic resin-pyrolyzed carbon based Si/C composites as anode material for lithium-ion batteries. Advanced Powder Technology, 2013. 24(6): p. 921-925.
    18. Y. Cen, Y. Fan, Q. Qin, R. D. Sisson, D. Apelian, and J. Liang, Synthesis of Si anode with a microsized-branched structure from recovered Al scrap for use in Li-Ion batteries. Journal of Power Sources, 2019. 410-411: p. 31-37.
    19. O. Mao, R. A. Dunlap, and J. R. Dahn, Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries - I. The Sn2Fe-C system. Journal of the Electrochemical Society, 1999. 146(2): p. 405-413.
    20. X.-Y. Fan, F.-S. Ke, G.-Z. Wei, L. Huang, and S.-G. Sun, Sn–Co alloy anode using porous Cu as current collector for lithium ion battery. Journal of Alloys and Compounds, 2009. 476(1): p. 70-73.
    21. P. Nithyadharseni, M. V. Reddy, B. Nalini, M. Kalpana, and B. V. R. Chowdari, Sn-based Intermetallic Alloy Anode Materials for the Application of Lithium Ion Batteries. Electrochimica Acta, 2015. 161: p. 261-268.
    22. Y. P. Tan, C. Q. Bi, D. Zhang, G. Y. Hou, H. Z. Cao, L. K. Wu, G. Q. Zheng, and Q. L. Wu, Three-dimensional ordered macroporous Cu/Sn anode for high rate and long cycle life lithium-ion batteries. Microporous and Mesoporous Materials, 2019. 274: p. 76-82.
    23. H. Kim, J. Choi, H. J. Sohn, and T. Kang, The insertion mechanism of lithium into Mg2Si anode material for Li-ion batteries. Journal of the Electrochemical Society, 1999. 146(12): p. 4401-4405.
    24. H. Kim, B. Park, H.-J. Sohn, and T. Kang, Electrochemical characteristics of Mg–Ni alloys as anode materials for secondary Li batteries. Journal of Power Sources, 2000. 90(1): p. 59-63.
    25. J. Zhao, K. Yu, Y. Hu, S. Li, X. Tan, F. Chen, and Z. Yu, Discharge behavior of Mg–4wt%Ga–2wt%Hg alloy as anode for seawater activated battery. Electrochimica Acta, 2011. 56(24): p. 8224-8231.
    26. N. S. Nazer, R. V. Denys, H. F. Andersen, L. Arnberg, and V. A. Yartys, Nanostructured magnesium silicide Mg2Si and its electrochemical performance as an anode of a lithium ion battery. Journal of Alloys and Compounds, 2017. 718: p. 478-491.
    27. Y.-T. Chen, F.-Y. Hung, T.-S. Lui, and H.-P. Tan, Microstructure and High Temperature Charge-Discharge Characteristics of 3D Additive Manufacturing Produced Mg-Ni Anode. MATERIALS TRANSACTIONS, 2018. 59(4): p. 685-689.
    28. Z. Zhang, M. Zhao, M. Xia, R. Qi, M. Liu, J. Nie, Z. L. Wang, and X. Lu, Magnesium Anodes with Extended Cycling Stability for Lithium-Ion Batteries. Advanced Functional Materials, 2018. 0(0): p. 1806400.
    29. Y.-T. Chen, F.-Y. Hung, T.-S. Lui, and J.-Z. Hong, Microstructures and Charge-Discharging Properties of Selective Laser Sintering Applied to the Anode of Magnesium Matrix. MATERIALS TRANSACTIONS, 2017. 58(4): p. 525-529.
    30. K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, Copper–tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system. Journal of Power Sources, 1999. 81-82: p. 383-387.
    31. H.-Y. Lee and S.-M. Lee, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochemistry Communications, 2004. 6(5): p. 465-469.
    32. T. Li, Y. L. Cao, X. Ai, and H. X. Yang, Cycleable graphite/FeSi 6 alloy composite as a high capacity anode material for Li-ion batteries. Vol. 184. 2008. 473-476.
    33. H. Kim, B. Park, H. J. Sohn, and T. Kang, Electrochemical characteristics of Mg-Ni alloys as anode materials for secondary Li batteries. Journal of Power Sources, 2000. 90(1): p. 59-63.
    34. C.-M. Park and H.-J. Sohn, A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries. Vol. 54. 2009. 6367-6373.
    35. T. Sarakonsri, C. Johnson, S. A. Hackney, and M. Thackeray, Solution route synthesis of InSb, Cu6Sn5 and Cu2Sb electrodes for lithium batteries. Vol. 153. 2006. 319-327.
    36. J. T. Vaughey, L. Fransson, H. A. Swinger, K. Edström, and M. M. Thackeray, Alternative anode materials for lithium-ion batteries: a study of Ag3Sb. Journal of Power Sources, 2003. 119-121: p. 64-68.
    37. J. M. Yan, H. Z. Huang, J. Zhang, and Y. Yang, The study of Mg2Si/carbon composites as anode materials for lithium ion batteries. Journal of Power Sources, 2008. 175(1): p. 547-552.
    38. C. Wang, A. John Appleby, and F. Little, Electrochemical Study on Nano-Sn, Li4.4Sn and AlSi0.1 Powders Used as Secondary Lithium Battery Anodes. Vol. 93. 2001. 174-185.
    39. J. Wolfenstine, CaSi2 as an anode for lithium-ion batteries. Journal of Power Sources, 2003. 124(1): p. 241-245.
    40. P. Mao, B. Yu, Z. Liu, F. Wang, and Y. Ju, Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure: A first-principles calculation. Computational Materials Science, 2014. 88: p. 61-70.
    41. P.-l. Mao, B. Yu, Z. Liu, F. Wang, and Y. Ju, Mechanical properties and electronic structures of MgCu2, Mg2Ca and MgZn2 Laves phases by first principles calculations. Transactions of Nonferrous Metals Society of China, 2014. 24(9): p. 2920-2929.
    42. J. Matsuda, N. Uchiyama, T. Kanai, K. Harada, and E. Akiba, Effect of Mg/Ni ratio on microstructure of Mg–Ni films deposited by magnetron sputtering. Vol. 617. 2014. 47–51.
    43. A. S. M. I. H. C. prepared under the direction of the, ASM handbook. Volume 3, Alloy phase diagrams. 1992: Materials Park, OH : ASM International, c1992.
    44. L. Pauling, Atomic Radii and Interatomic Distances in Metals. Journal of the American Chemical Society, 1947. 69(3): p. 542-553.
    45. X. H. Huang, X. H. Xia, Y. F. Yuan, and F. Zhou, Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochimica Acta, 2011. 56(14): p. 4960-4965.
    46. A. R. Park, K. J. Jeon, and C. M. Park, Electrochemical mechanism of Li insertion/extraction in ZnS and ZnS/C anodes for Li-ion batteries. Electrochimica Acta, 2018. 265: p. 107-114.
    47. J. Park, J. B. Ju, W. Choi, and S. O. Kim, Highly reversible ZnO@ZIF-8-derived nitrogen-doped carbon in the presence of fluoroethylene carbonate for high-performance lithium-ion battery anode. Journal of Alloys and Compounds, 2019. 773: p. 960-969.
    48. S. Nohara, N. Fujita, S. G. Zhang, H. Inoue, and C. Iwakura, Electrochemical characteristics of a homogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni. Journal of Alloys and Compounds, 1998. 267(1-2): p. 76-78.
    49. K. L. Lee, J. Y. Jung, S. W. Lee, H. S. Moon, and J. W. Park, Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources, 2004. 129(2): p. 270-274.
    50. C. Kim, J. W. Jung, K. R. Yoon, D. Y. Youn, S. Park, and I. D. Kim, A High-Capacity and Long-Cycle-Life Lithium Ion Battery Anode Architecture: Silver Nanoparticle-Decorated SnO2/NiO Nanotubes. Acs Nano, 2016. 10(12): p. 11317-11326.
    51. S. H. Nam, H.-S. Shim, Y.-S. Kim, M. A. Dar, J. G. Kim, and W. B. Kim, Ag or Au Nanoparticle-Embedded One-Dimensional Composite TiO2 Nanofibers Prepared via Electrospinning for Use in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2010. 2(7): p. 2046-2052.
    52. J. Zhu, Z. Xu, and B. Lu, Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy, 2014. 7: p. 114-123.
    53. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, and Y. Gogotsi, Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science, 2013. 341(6153): p. 1502.
    54. C. Zhang, W. Lv, Y. Tao, and Q.-H. Yang, Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy & Environmental Science, 2015. 8(5): p. 1390-1403.
    55. M. S. Balogun, W. T. Qiu, F. Y. Lyu, Y. Luo, H. Meng, J. T. Li, W. J. Mai, L. Q. Mai, and Y. X. Tong, All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016. 26: p. 446-455.
    56. H. Chen, X. Hou, F. Chen, S. Wang, B. Wu, Q. Ru, H. Qin, and Y. Xia, Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon, 2018. 130: p. 433-440.
    57. K. Amine, J. Liu, and I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochemistry Communications, 2005. 7(7): p. 669-673.
    58. M. J. Lee, J.-K. Hwang, J. H. Kim, H.-S. Lim, Y.-K. Sun, K.-D. Suh, and Y. M. Lee, Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. Journal of Power Sources, 2016. 305: p. 259-266.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE