簡易檢索 / 詳目顯示

研究生: 茆尚勳
Mao, Shang-Hsun
論文名稱: 新型切換式磁阻與同心式永磁馬達之設計與實現
Design and Implementation of Novel Switched Reluctance and Coaxial PM Motors
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 126
中文關鍵詞: 切換式磁阻馬達直流無刷馬達同心式永磁馬達
外文關鍵詞: coaxial PM motor, Switched reluctance motor, brushless DC motor
相關次數: 點閱:76下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別探討切換式磁阻馬達與直流無刷馬達之創新設計,建立馬達電腦輔助設計流程。切換式磁阻馬達研究中提出對正與不對正位置下,氣隙磁導之解析解,可以磁路分析求解對正與不對正位置的下的磁交鏈曲線,再者,提出由磁共能之最大變化率求得最佳電流與繞組匝數之設計方法,結合可行性三角形法,構成切換式磁阻馬達泛用設計流程。本研究亦提出一新型切換式磁阻馬達,其定子是由數個C型鐵芯所組成,使其具有繞線簡便、製作成本低、槽空間大及可模組化等特點,運用所建構之設計流程,設計並實作,針對此馬達之特殊磁路結構,提出一種簡化分析模型可有效地縮短分析時間,使得整個設計流程更有效率,最後以實測電感曲線驗證設計的正確性。
    直流無刷馬達之創新設計方面,本研究提出以一外轉子及一內轉子直流無刷馬達配置在同一軸心位置,再結合一行星齒輪,外轉子馬達之轉子連接於行星臂,內轉子馬達連接於太陽齒輪,環齒輪為輸出件,組成同心式永磁馬達。研究中探討雙動力輸入的行星齒輪運動與動力特性,整合直流無刷馬達的設計,建構同心式永磁馬達之設計流程。同心式馬達依內、外轉子馬達之動力輸出方向分為三種驅動模式,第一、起動模式:適當控制內、外轉子馬達轉速可使輸出件維持靜止狀態,隨後調變內、外轉子轉速及可使輸出件運轉,此特性可克服負載慣量及摩擦力,有效地降低馬達的起動電流;第二、高轉矩模式:若兩輸入動力方向相同可獲得高轉矩輸出;第三、高轉速模式:若兩輸入動力方向相反輸出轉矩會降低轉速可提高。本研究實際設計並實作同心式永磁馬達,藉由馬達反電動勢量測,驗證設計流程的正確性。

    This dissertation proposes two innovation designs which are composed of a switched reluctance motor and a brushless DC motor. In the switched reluctance motor, this dissertation proposes a novel structure of switched reluctance motor constructed by C-core stators. Unlike the conventional SRM, the winding of the proposed SRM can be wound individually and automatically without complex fixture and expensive winding equipment. A 2-D FEA model which is simplified from 3-D FEA model because of the axial field distribution is presented to shorten the simulation time and to analyze more efficiently. In general, the operating point of SRM is in the saturated region. However, the operating current is hard to determine because there is no index to define it. In this dissertation, a simple method is used to determine the optimum exciting for maximum increment of average torque. This will be useful for SRM designers to decide the rated current and to obtain the maximum motor efficiency.
    In the brushless DC motor, a high-torque and adjustable-speed drive with a novel structure is developed. The novel drive consists of two separate brushless DC motors, one internal and the other external, which are arranged coaxially. Combining the motors with a planetary gear train, the functions of continuously variable transmissions can be achieved by controlling the output of the two coaxial motors appropriately. The kinematics model of the planetary gears and the magnetic model of the coaxial motor are given by finite element magnetic analysis. Both computer simulation and experimental results are presented to illustrate the effectiveness of the proposed design method of the novel drive.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 符號表 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 6 1.2.1 切換式磁阻馬達建模分析 6 1.2.2 切換式磁阻馬達設計 7 1.2.3 全距繞組切換式磁阻馬達 8 1.2.4 雙轉子馬達 10 1.2.5 結合齒輪與馬達的整合設計與分析 15 1.3 論文架構 17 第二章 切換式磁阻馬達設計 18 2.1 力矩方程 18 2.2 切換式磁阻馬達操作原理 19 2.3 可行性三角形法 21 2.4 能量轉換與激磁飽和之影響 22 2.5 最佳操作點 24 2.6 等效磁路分析 29 2.6.1 利用等效磁路分析求對正位置下之磁交鏈 31 2.6.2 利用等效磁路分析求不對正位置下之磁交鏈 34 2.7 切換式磁阻馬達設計流程 41 第三章 新型切換式磁阻馬達設計 43 3.1 新型切換式磁阻馬達結構 43 3.2 新型切換式磁阻馬達尺寸設計 46 3.2.1 轉子及定子極弧展開角 46 3.2.2 馬達細部尺寸設計 47 3.3 電流與繞組匝數設計 49 3.3.1 等效磁路 49 3.3.2 對正位置磁交鏈 49 3.3.3 不對正位置磁交鏈 52 3.3.4 電流、繞組匝數設計 53 3.4 二維簡化分析 54 3.5 新型切換式磁阻馬達實作與電感曲線量測 59 3.5.1 馬達實作 59 3.5.2 電感量測 61 3.6 新型切換式磁阻馬達與傳統切換式磁阻馬達比較 64 第四章 同心式永磁馬達設計 67 4.1 同心式永磁馬達 68 4.1.1 結構組成與作動 68 4.1.2 行星齒輪系減速機 69 4.2 雙輸入行星齒輪系動力分析 71 4.2.1 運動分析 71 4.2.2 動力分析 74 4.3 直流無刷馬達設計 77 4.3.1 永磁無刷馬達磁路模型 77 4.3.2 感應電動勢、轉矩 81 4.3.3 三相馬達繞組排列方法與繞線因數 83 4.4 同心式永磁馬達操作模式 86 第五章 同心式永磁馬達設計流程 89 5.1 設計流程 89 5.2 同心式永磁馬達設計 91 5.2.1 磁路設計 91 5.2.2 電氣設計 99 5.3 同心式永磁馬達電腦數值模擬 102 5.3.1 磁場分布 103 5.3.2 反電動勢常數模擬 105 5.3.3 穩態轉矩模擬 107 5.3.4 暫態響應模擬 108 5.4 同心式永磁馬達操作模式 112 5.5 同心式永磁馬達實作 114 5.6 同心式永磁馬達反電動勢量測 116 第六章 結論與建議 119 參考文獻 121

    [1] Afjei E.S., and, Toliyat H.A., “A novel multilayer switched reluctance motor,” IEEE Transactions on Energy Conversion, Vol. 17, No. 2, pp. 217-218, June 2002.
    [2] Ashour H.A., Reay D.S., and, Williams B.W., “Shunt-excited doubly salient 8/6-switched reluctance machine,” IEE Proceedings- Electric Power Applications, Vol.147, No. 5, pp. 391-401, Sep. 2000.
    [3] Bangura J., “Design of High-Power Density and Relatively High Efficiency Flux-Switching Motor,” IEEE Transactions on Energy Conversion, Vol. 21, No. 2, pp. 416-425, June 2006.
    [4] Chi H.P., Lin R.L., and Chen J.F., “Simplified flux-linkage model for switched-reluctance motors,” IEE Proceedings-Electric Power Applications, Vol. 152, No. 3, pp. 577-583, May 2005
    [5] Fan Y. F., “Stator used for dynamo or electromotor,” U.S. Patent 6188159, Feb. 13, 2001.
    [6] Hong J.P., Ha K.H., and Lee J., “Stator pole and yoke design for vibration reduction of switched reluctance motor,” IEEE Transactions on Magnetics, Vol. 38, No. 2, pp. 929-932, March 2002.
    [7] Hanselman D.C., Brushless Permanent-Magnet Motor Design, McGraw-Hill, New York, 1994.
    [8] Kawamura A., Hoshi N., Kim T.W., Yokoyama T., and Kume T., “Analysis of anti-directional-twin-rotary motor drive characteristics for electric vehicles” IEEE Transactions on Industrial Electronics, Vol. 44, No. 1, pp. 64-70, February 1997.
    [9] Kawamura A., Okubora T., Sugawara T., Nakano M., and Arimitsu M., “Analysis on the two axis motor(Super Motor) for electric vehicles” Proceedings of the 8th IEEE International Workshop on Advanced Motion Control, pp. 71-74, March 2004.
    [10] Krishnan R., SWITCHED RELUCTANCE MOTOR DRIVES, CRC Press, Boca Raton, 2001.
    [11] Krishnan R., Arumugan R., and Lindsay J.F., “ Design procedure for switched-reluctance motors,” IEEE Transactions on Industry Applications, Vol. 24, pp. 456-461, May-June 1988.
    [12] Lawrenson P.J., Stephenson, J. M., Blenkinsop, P. T., Corda, J., and Fulton, N. N., “Variable-speed switched reluctance motors.” Proceedings IEE, 127, Pt.B, pp. 253-65.
    [13] Lee J.W., Kim H.S., Kwon B. I., and Kim B.T., “New rotor shape design for minimum torque ripple of SRM using FEM,” IEEE Transactions on Magnetics, Vol.40, No. 2, pp.754-757, March 2004.
    [14] Lin R.L., Chen J.F., and Chi H.P., “Spice-based flux-linkage model for switched reluctance motors,” IEE Proceedings-Electric Power Applications, Vol. 152, No. 6, 4, pp. 1468 – 1476, Nov. 2005
    [15] Lovatt H.C., “Analytical model of a classical switched-reluctance motor,” IEE Proceedings- Electric Power Applications, Vol. 152, No. 2, 4, pp. 352-358, March 2005.
    [16] Mecrow B.C, “Fully pitched-winding switched-reluctance and stepping-motor arrangements,” IEE Proceedings-B Electric Power Applications, Vol. 140, No. 1, pp. 61-70, Jan. 1993.
    [17] Mecrow B.C, “New winding configurations for doubly salient reluctance machines,” IEEE Transactions on Industry Applications, Vol. 32, No. 6, pp. 1348-1356, Nov.-Dec. 1996.
    [18] Miller T.J.E., Brushless Permanent-Magnet and Reluctance Motor Drives, Oxford University Press, New York, 1993.
    [19] Miller T.J.E., Switched Reluctance Motors and Their Control, Magna Physics, Ohio and Oxford University Press, New York, 1993.
    [20] Miller T.J.E, and Mcgilp M., “Nonlinear-theory of the switched reluctance motor for rapid computer-aided-design,” IEE Proceedings-B Electric Power Applications, Vol. 137, No. 6, pp. 337-347, Nov. 1990.
    [21] Platt D., and Smith B.H., “Twin rotor drive for an electric vehicle” IEE Proceedings of Electric Power Applications, Vol. 140, No. 2, pp. 131-138, March 1993.
    [22] Pollock C., and Wallace M., “The flux switching motor, a DC motor without magnets or brushes,” Thirty-Fourth IAS Annual Meeting, Vol. 3, pp. 1980-1987, Oct. 1999.
    [23] Pollock C., and Brackley M., “Comparison of the acoustic noise of a flux-switching and a switched reluctance drive,” IEEE Transactions on Industry Applications, Vol. 39, No. 3, pp. 826-834, May-June 2003.
    [24] Prieto R., Cobos J. A., Garcia O., Alou P., and Uceda J., “Study of 3-D magnetic components by means of Double 2-D methodology,” IEEE Transaction on Industry Electronics, Vol. 50, No. 1, pp.183-192, Feb. 2003.
    [25] Profumo F., Zhang Z., and Tenconi A., “Axial flux machines drives: a new viable solution for electric cars” Proceedings of the IEEE IECON 22nd International Conference on Industrial Electronics, Control and Instrumentation, Vol. 1, pp. 34-40, August 1996.
    [26] Qu R., and Lipo T.A., “Dual-rotor, radial-Flux, toroidally wound, permanent-magnet machines” IEEE Transactions on Industry Applications, Vol. 39, No. 6, pp.1665-1673, November/December 2003.
    [27] Qu R., and Lipo T.A., “Design and parameter effect analysis of dual-rotor, radial-flux, toroidally wound, permanent-magnet machines,” IEEE Transactions on Industry Applications, Vol. 40, No. 3, pp. 771-779, May/June 2004.
    [28] Radun A., “Analytically computing the flux linked by a switched reluctance motor phase when the stator and rotor poles overlap,” IEEE Transactions on Magnetics, Vol. 36, No. 4, Part 2, pp. 1996-2003, July 2000.
    [29] Radun A., “Analytical calculation of the switched reluctance motor's unaligned inductance,” IEEE Transactions on Magnetics, Vol. 35, No. 6, pp. 4473-4481, Nov. 1999.
    [30] Radun A.V., “Design considerations for the switched reluctance motor,” IEEE Transactions on Industry Applications, Vol. 31, No. 5, pp. 1079- 1087, Sept.-Oct. 1995.
    [31] RM-Core, Kawasaki Steel Corporation, Japan.
    [32] Roos F., Johansson H., and Wikander J., “Optimal selection of motor and gearhead in mechatronic applications,” MECHATRONICS, Vol.16, Issue 1, pp. 63-72, Feb. 2006.
    [33] Roux C., and Morcos M.M., “On the use of a simplified model for switched reluctance motors,” IEEE Transactions on Energy Conversion, Vol. 17, No. 3, pp.400-405, Sep. 2002.
    [34] Sheth N.K., and Rajagopal K.R., “Calculation of the flux-linkage characteristics of a switched reluctance motor by flux tube method,” IEEE Transactions on Magnetics, Vol. 41, No. 10, pp. 4069-4071 Oct. 2005.
    [35] Sheth N.K., and Rajagopal K.R., “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Transactions on Magnetics, Vol. 39, No. 5, pp.3214-3216, Sep. 2003.
    [36] Tsai M.C., Huang C.C., and Huang Z.Y., “A new two-phase homopolar switched reluctance motor for electric vehicle applications,” Journal of Magnetism and Magnetic Materials, Vol. 267, Issue. 2, pp. 173-181, Dec. 2003.
    [37] Vujicic V., and Vukosavic S.N, “A simple nonlinear model of the switched reluctance motor,” IEEE Transactions on Energy Conversion, vol. 15, Issue 4, pp.395-400, Dec. 2000.
    [38] Xu L., “A new breed of electric machines-basic analysis and applications of dual mechanical port electric machines,” Proceedings of the 8th International Conference on Electrical Machines and Systems, Vol. 1, pp. 24-31, September 2005.
    [39] Yan H.S., and Wu Y.C., “A novel configuration for a brushless DC motor with an integrated planetary gear train,” Journal of Magnetism and Magnetic Materials, vol. 301, Issue 2, pp. 532-540, Jun. 2006.
    [40] 工程師技術支援網站,http://china.nikkeibp.co.jp/china/news/auto/ 200310/auto200310290130.html。
    [41] 林博正、蔡明祺、杜黎蓉,“無段變速馬達”,中華民國專利(發明),專利證號:183349。
    [42] 林博正、蔡明祺、杜黎蓉,“雙同心軸馬達”,中華民國專利(發明),專利證號:181543。
    [43] 何世江,“交流同步伺服馬達繞線設計與分析”,機械工業雜誌,pp. 186-197,民國84年2月。
    [44] 茆尚勳,直驅式跑步機用直流無刷馬達之設計,碩士論文,國立成功大學機械工程學系,民國91年。
    [45] 陳雙穩,永磁無刷馬達之繞線結構對性能影響之研究,碩士論文,國立成功大學機械工程學系,民國90年。
    [46] 黃正毅,外轉式兩相切換磁阻馬達之驅動控制,碩士論文,國立成功大學機械工程學系,民國90年。
    [47] 蔡原昆,同心式馬達傳動機構設計與分析,碩士論文,國立虎尾科技大學機械與機電工程研究所,民國94年。
    [48] 賴益志,無刷直流馬達之磁路特性分析,碩士論文,國立成功大學機械工程學系,民國89年。
    [49] 顏鴻森、蔡明祺、王心德、洪銀農、洪銀樹,“馬達與齒輪整合之裝置”,中華民國專利(發明),專利證號:434977。
    [50] 羅應照,同步磁阻馬達與開關磁阻馬達特性介紹課程講義,國立清華大學動力機械工程學系,民國88年。

    下載圖示 校內:2009-08-08公開
    校外:2011-08-08公開
    QR CODE