| 研究生: |
張貽雲 Chang, Yi-Yun |
|---|---|
| 論文名稱: |
以分子動力學模擬多元合金奈米團簇之結構特性 Investigation of Structural Properties of Multi-elements Alloy Nanocluster Using Molecular Dynamics Simulation |
| 指導教授: |
翁政義
Weng, Cheng-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 分子動力學模擬 、多元合金奈米團簇 、非晶態 |
| 外文關鍵詞: | amorphous, molecular dynamics simulation, multi-elements alloy nanocluster |
| 相關次數: | 點閱:124 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以分子動力學模擬多元合金奈米團簇從高溫熔融狀態冷卻至室溫之結構變化情形,所採用勢能參數為緊束法(Tight-Bindind Method)之半經驗勢能函數,並以RDF、 Wendt–Abraham parameter 及 Pair Analysis方法討論製程參數包含合金的組成成分、添加元素及淬火速率對合金團簇結構的影響。由合金組成成分的結果可知,由於第三元素成份之增加,使面心立方結構特徵(1421)隨之遞減,二十面體結構特徵(1431、1551、1541)有遞增之現象,但是在體心立方結構特徵方面因為金屬間化合物的產生使(CuNi)0.78Al0.22會有增加之現象。由合金添加元素的結果可知,因為鋁大於鎳之原子半徑14.4%相較於銠(8%)大上許多,這表示添加鋁元素造成原晶格破程度比銠元素能力強,所以使合金團簇具有較大之非晶質形成能力。由合金淬火速率的結果可知,因為淬火速率的不同造成合金團簇有晶質相與非晶質相的產生,並利用Wendt–Abraham parameter可以明確找出各多元合金團簇的轉換溫度。最後提出分子動力學模擬之瓶頸及改進方法,作為今後努力的方向。
The present study investigates the structural behavior of multi-elements alloy nanocluster in a defined temperature range between high and room temperature with the principles of molecular dynamics simulation. The applied potential parameter is the semi-empirical potential parameter of the tight-binding method. The fabrication parameter is analyzed by RDF, Wendt-Abraham parameter and pair analysis, including the effects of composition of alloy, additive elements, and quenching rate on the structure behavior of alloy nanocluster. The structural characteristic of the alloy nanocluster is directly influenced by the concentration of third additive. The increase in the third additive reduces its characteristics of element face centered cubic (FCC) (1421), but increases its characteristics of both icosahedron (1435, 1551, 1541) and body centered cubic (BCC). The increasing characteristic of BCC is the result of the formation of an intermetallic compound (CuNi)0.78Al0.22. Since the atomic radius of aluminum is larger than that of rhodium, the addition of aluminum led to a higher degree of lattice disruption than rhodium, and thereby renders the alloy nanocluster a higher degree of amorphous alloy formation (14.4 vs. 8%). The differences in the quenching rate of the alloys render the formation of amorphous and crystalline phases. The Wendt-Abraham parameter is then employed to determine the transition temperature of the alloy nanocluster. The limitation of the molecular dynamic simulation is also proposed in this study, and its improvement is an ongoing objective.
[01] P. Duwes, 1967, “Structure and properties of alloys rapidly quenched
from the liquid state,” Trans. Am. Soc. Metals, Vol. 60, pp. 607-616.
[02] 黃國雄,1996,「等莫耳比多元合金研究」,國立清華大學材料科學工程研究所碩士 論文。
[03] K. Akamatsu and S. Deki, 1998, “Dispersion of gold nanoparticles into
a nylon 11 thin film during heat treatment: in situ optical transmission
study,” J. Mater. Chem., Vol. 8, pp. 637-640.
[04] S. Deki, K. Sayo, T. Fujita, A. Yamada and S. Hayashi, 1999,
“Dispersion of nano-sized gold particles into polymers: dependence on
terminal groups of polymers and morphology of vapor-deposited gold,”
J. Mater. Chem., Vol. 9, pp. 943-948.
[05] S. Iijima, 1991, “Helical microtubules of graphitic carbon.” Nature, Vol.354, pp. 56-58.
[06] S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati
and E. Plichta, 2001, “Enhancement of ion transport in polymer
electrolytes by addition of nanoscale inorganic oxides,” J. Power
Sources., Vol. 97-98, pp. 644-648.
[07] S. T. Oh, M. Sando, T. Sekino, and K. Niihara, 1998, “Processing and
properties of copper dispersed alumina matrix nanocomposites,”
Nanostruct. Mater., Vol. 10, Issue. 2, pp. 267-272.
[08] J. M. Haile, 1992, Molecular Dynamics Simulation: Elementary
Methods, John Wiley & Sons, Inc., New York.
[09] D. C. Rapaport, 1997, The Art of Molecular Dynamics Simulation,
Cambridge University Press, London.
[10] J. M. Goodfellow et al., 1990, Molecular dynamics, CRC Press, Boston.
[11] M. P. Allen and D. J. Tildesley, 1991, Computer Simulation of Liquids,
Oxford Science, London.
[12] D. Frenkel and B. Smit, 1996, Understanding Molecular Simulation,
Academic Press, San Diego.
[13] D.W. Heermann, 1990, Computer Simulation Method, Springer-Verlag, Berlin.
[14] W. Eckstein, 1991, “Computer Simulation of Ion-Solid
interaction,”Springer-Verlag, Berlin.
[15] M. P. Allen et al., 1992,“Computer Simulation in Chemical
Physics,”Series C: Mathematical and Physical Sciences, Vol. 397,
Kluwer Academic, Dordrecht.
[16] M. Meyer et al., 1991,“Computer Simulation in Material
Science,”Series E: Applied Sciences, Vol. 205, Kluwer Academic, Dordrecht.
[17] S. Foiles, M. Baskes, and M. Daw, 1986, “Embedded-atom-method
functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,”
Phys. Rev. B. Vol. 33, Issue. 12, pp. 7983-7991.
[18] J. Slater, G. Koster, 1954, "Simplified LCAO method for periodic
potential problem," Physical Review, Vol. 94, No. 6, pp. 1498-1524.
[19] J. D. Honeycutt and H. C. Andersen, 1987, “Molecular dynamics
study of melting and freezing of small Lennard-Jones clusters,” J. Phys.
Chem., Vol. 91, pp. 4950-4963.
[20] H. Jónsson and H. C. Andersen, 1988, “Icosahedral Ordering in the
Lennard-Jones Liquid and Glass,” Phys. Rev. Lett. Vol. 60, pp.2295–2298.
[21] H. Li, G. H. Wang, X. F. Bian, and F. Ding, 2001, “Local cluster
formation in a cobalt melt during the cooling process,” Phys. Rev. B.
Vol. 65, Issue. 3, No. 035411.
[22] L. Wang, X. F. Liu, Y. N. Zhang, H. Yang, Y. Chen, and X. F. Bian,
2003,“The molecular dynamics simulation of structure and transport
properties of sheared super-cooled liquid metal,” Phys. Lett. A. Vol.
319, pp. 518-522.
[23] L. Wang, Y. N. Zhang, X. F. Bian, and Y. Chen, 2003, “Melting of Cu
nanoclusters by molecular dynamics simulation,” Phys. Lett. A. Vol.
310, pp. 197-202.
[24] Y. Chen, X. F. Bian, J. X. Zhang, Y. N. Zhang and L. Wang, 2004,
“Structure and dynamics of gold nanocluster under cooling conditions,”
Modelling Simul. Mater. Sci. Eng. Vol. 12 , pp. 373–379.
[25] L. Qi, H.F. Zhang, and Z.Q. Hu, 2004, “Molecular dynamic simulation
of glass formation in binary liquid metal: Cu–Ag using EAM,”
Intermetallics, Vol. 12, pp. 1191–1195.
[26] Q. X. Pei, C. Lu, and M. W. Fu, 2004, “The rapid solidification of
Ti3Al: a molecular dynamics study,” J. Phys.: Condens. Matter., Vol.
16, pp. 4203–4210.
[27] N. I. Papanicolaouyx, G. C. Kallinterisy, G. A. Evangelakisy, D. A.
Papaconstantopoulosyz, and M. J. Mehl, 2004, “Second-moment
interatomic potential for Cu–Au alloys based on total-energy
calculations and its application to molecular-dynamics simulations,”
J. Phys.: Condens. Matter., Vol. 10, pp. 10979–10990.
[28] N.I. Papanicolaou, H. Chamati, G.A. Evangelakis, and D. A.Papaconstantopoulosyz, 2003, “Second-moment interatomic potential
for Al, Ni and Ni–Al alloys, and molecular dynamics application,”
Comp. Mater. Sci., Vol. 27, pp. 191–198.
[29] S. Ozgen, and O. Adiguzel, 2003, “Molecular dynamics simulation of
diffusionless phase transformation in a quenched NiAl alloy model,”
J. Phys. Chem. Solids., Vol. 64, pp. 459–464.
[30] J. Ma, and J. E. Straub, 1994, “Simulated annealing using the classical
density distribution,” J. Chem. Phys., Vol. 101, pp. 533-541.
[31] A. Roitberg, and R. Elber, 1991, “Modeling side chains in peptides and
proteins: Application of the locally enhanced sampling and the
simulated annealing methods to find minimum energy conformations,”
J. Chem. Phys., Vol. 95, pp. 9277-9287.
[32] J. C. Greer, 1996 “Alternative equations of motion for dynamical
simulated annealing of the density functional,” Phys. Rev. B. Vol. 53,
pp. 10651-10655.
[33] M. Daw, S. Foiles, and M. Baskes, 1993, “The embedded-atom method:
a review of theory and applications,” Materials Science Reports, Vol. 9,
Issue. 7-8, pp. 251-310.
[34] M. Baskes, J. Nelson, and A. Wright, 1989, “Semiempirical modified
embedded-atom potentials for silicon and germanium,” Phys. Rev. B.,
Vol. 40, Issue. 9, pp. 6085-6100.
[35] M. Baskes, 1992, “Modified embedded-atom potentials for cubic
aterials and impurities,” Phys. Rev. B, Vol. 46, Issue. 5, pp.2727-2742.
[36] C. Kittle, 1996, Introduction to Solid State Physics, John Wiley & Sons,
New York.
[37] 劉東昇,化學量子力學,徐氏基金會出版,台北,1992
[38] 江元生,結構化學,五南圖書出版,台北,1998
[39] L. Colombo, 1998,"A source code for tight-binding molecular
dynamicssimulation," Computational Materials Science, Vol. 12, pp.278-287
[40] V. Rosato, M. Guillope, and B. Legrand, 1989, “Thermodynamical and
structural properties of f.c.c. transition metals using a simple
tight-binding model,” Philosophical Magazine A, Vol. 59, Issue. 2, pp.
321-336.
[41] F. Cleri, and V. Rosato, 1993, “Tight-binding potentials for transition
metals and alloys,” Phys. Rev. B, Vol. 48, Issue. 1, pp. 22-33.
[42] H. R. Wendt and F. F. Abraham, 1978, “Empirical Criterion for the
Glass Transition Region Based on Monte Carlo Simulations,” Phys.
Rev. Lett. Vol. 41, Issue. 18, pp.1244-1246.
[43] A. Inoue, and T. Zhang, 1996, “Fabrication of Bulk Glassy
Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting
Method”, Mater. T. JIM., Vol. 37, pp. 185-187.
[44] A. Inoue, T. Zhang and T. Masumoto, 1990, “Zr-Al-Ni Amorphous
Alloys with High-Transition Temperature and Significant Supercooled
Liquid Region,” Mater. T. JIM., Vol. 31, No. 3, pp. 177-183.
[45] A. Inoue, 2000, “Stabilization of metallic supercooled liquid and bulk
amorphous alloys,” ACTA Mater., Vol. 48, pp. 279-306.
[46] X. M. Wang, I. Yoshii, and A. Inoue, 2000, “Bulk amorphous
Co-Ni-based alloys with a large supercooled liquid region,” Mater. T.
JIM., Vol. 41 pp. 539-542.
[47] A. Inoue, and T. Masumoto, U.S. Patent, No. 5032196, Japanese Patent,No. 07-122120.
[48] 賴高廷,1998,「高亂度合金微結構及性質探討」,國立清華大學材料科學工程研究 所碩士論文。
[49] 許雲翔,2000,「以FCC 及BCC 元素為劃分配製等莫耳比多元合金系統之研究」,國 立清華大學材料科學工程研究所碩士論文。
[50] 楊榮顯,工程材料科學,全華科技圖書公司,台北,1997。