簡易檢索 / 詳目顯示

研究生: 馬其駿
Ma, Chi-Chun
論文名稱: 包含剪切與犁切機制之磨削力模式
A Dual-Mechanism Approach to Modeling the Average Grinding Forces
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 55
中文關鍵詞: 磨削能磨削力犁切磨削製程磨刃間距剪切
外文關鍵詞: grain spacing, shearing, ploughing, grinding force, grinding process, grinding energy
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以單磨刃磨削為基礎,建立砂輪磨削製程的磨削平均力解析模式。以平均單位面積磨刃數、平均切屑厚度及平均切屑寬度等磨削幾何特徵,將砂輪簡化模擬為具有等磨刃間距與等效的幾何特性的銑刀,以銑削製程模擬簡化的平均磨削製程,藉由捲積方法建立此簡化砂輪的平均磨削力解析式,使得平均磨削力可以由磨削參數與磨削係數來表示。此解析式可以藉由磨削參數與磨削係數得到平均磨削力,也可以經由平均磨削力與磨削參數得到不同砂輪與工件的磨削係數。進一步地,藉由本模式可以將總磨削力分離為剪切磨削力與犁切磨削力。本文同時以實驗證明不同磨削條件有不同的剪切與犁切力分佈,且隨著切屑厚度愈薄比犁切磨削能在總比磨削能中所佔比例愈大。

    Based on the mechanistic grinding force model for a single abrasive grain, this paper presents a close form expression for the average grinding force in the wheel grinding process. Based on the key geometric features of the grinding process including the surface grit density, the average chip thickness and the average chip width, the grinding wheel is approximated by a milling cutter with evenly spaced cutting teeth of the equivalent geometric characteristics. Convolution concept is applied to the simulated milling cutter to obtain an analytical expression for the average grinding forces in terms of the grinding conditions and grinding constants. Conversely, the unknown mechanistic grinding constants can be calculated from the measured average forces for the given pair of grinding wheel and work material. Furthermore, both shearing grinding force and ploughing grinding force can be separated from total grinding force. Experiments were carried out to prove the model’s predictive accuracy for the average forces and also to verify its efficacy in obtaining the mechanistic constants under various grinding conditions.

    目錄 中文摘要I AbstractII 致謝III 目錄IV 圖目錄VII 表目錄IX 符號說明X 第一章 緒論1 1.1前言1 1.2文獻回顧2 1.3研究動機與目的6 1.4研究方法與範疇7 第二章 磨削基本理論8 2.1磨削幾何8 2.1.1砂輪表面型態8 2.1.2磨削切屑幾何10 2.2 磨削力12 2.3 比磨削能15 第三章 包含剪切與犁切機制之磨削力模式16 3.1前言16 3.2磨削座標系統16 3.3砂輪表面磨刃分佈模擬18 3.4單磨刃的磨削力21 3.5磨刃序列函數23 3.6角度域的總磨削力24 3.7磨削之平均力模式24 3.8切削力常數的求法27 3.9結論28 第四章 實驗結果與討論29 4.1實驗29 4.1.1實驗目的29 4.1.2實驗材料29 4.1.3實驗砂輪29 4.1.4實驗設備31 4.1.5實驗前準備工作33 4.2實驗結果與討論34 4.2.1不同徑向切深 對磨削力及磨削常數的影響34 4.2.2.不同粒度砂輪對磨削力的影響45 第五章 結論與建議50 5.1結論50 5.2建議51 參考文獻52 自述55 圖目錄 圖1.1 Lortzs 之切削、犁切與摩擦三階段的模型4 圖1.2 Younis 之切削、犁切與摩擦三階段的模型4 圖2.1磨削外觀8 圖2.2 砂輪表面示意圖9 圖2.3 沿砂輪圓周一條線上之磨刃9 圖2.4 切屑截面圖11 圖2.5磨粒與工件磨耗13 圖2.6磨削過程14 圖3.1 磨削座標系統17 圖3.2 砂輪表面磨刃分佈模擬18 圖3.3 切屑幾何20 圖3.4 磨刃序列函數23 圖4.1 實驗設備配置圖32 圖4.2 量測方向示意圖33 圖4.3 砂輪修整34 圖4.5 不同徑向切深的X、Y方向力量35 圖4.6 不同徑向切深的kt 37 圖4.7 不同徑向切深的kr 37 圖4.8 不同徑向切深的kts 39 圖4.9 不同徑向切深的krs 39 圖4.10 不同徑向切深的ktp40 圖4.11 不同徑向切深的krp 40 圖4.12 不同徑向切深的剪切、犁切力比較41 圖4.13 不同徑向切深的剪切力和犁切力的比值41 圖4.14 dr=0.02 的kt 與kts 比較43 圖4.15 dr=0.02 的kr 與krs 、krp 比較43 圖4.16 比磨削能44 圖4.17 Malkin之比磨削能44 圖4.18 不同粒度砂輪的X、Y方向力量46 圖4.19 不同粒度砂輪的kt 與kts 比較47 圖4.20 不同粒度砂輪的kr 與krs 、krp 比較48 圖4.21 不同粒度砂輪的 比較48 圖4.22 不同粒度砂輪的剪切、犁切力比較49 表目錄 表4.1 SKD11(AISI D2)合金元素重量百分比29 表4.2 一般砂輪標示法30 表4.3磨料粒度與其相對之平均粒徑30 表4.4 組織與磨料率之關係31 表4.5 一般砂輪製法特性31 表4.6不同徑向切深 實驗表34 表4.7 不同粒度砂輪實驗表45

    參考文獻

    [1]Nakagawa, T. and Suzuki, K., 1986, “Highly Efficient Grinding of Ceramics and Hard Metals on Grinding Center,” Annals of the CIRP, Vol.35, pp. 205-210.
    [2]Hillier, M.J., 1966, “On a Three-Dimensional Model of Surface Grinding Process,” Int. J. Mach. Tool Des. Res., Vol. 6, pp. 109-113.
    [3]Kumar, K. V., Cozminca, M., Tanaka, Y. and Shaw, M. C., 1980, “A New Method of Studying the Performance of Grinding Wheels,” ASME Journal of Engineering for Industry, Vol. 102, pp. 80-84.
    [4]Shaw, Milton C., 1996, Principles of Abrasive Processing, Oxford
    [5]Malkin, S., 1989, Grinding Technology: Theory and Applications of Machining with Abrasives, Ellis Horwood and John Wiley, New York.
    [6]Malkin, S., 1976, “Selection of Operation Parameter in Surface Grinding of Steels,” ASME Journal of Engineering for Industry, pp. 306-313.
    [7]Pecherer, E. and Malkin, S., 1984, “Grinding of Steels with Cubic Boron Nitride (CBN),” Annals of the CIRP, Vol. 33, pp. 211-215.
    [8]Rubenstein, C., 1972, “The Mechanics of Grinding, ” Int. J. Mach. Tool Des. Res. Vol. 12, pp. 127-139.
    [9]Younis, M., Sadek, M. M. and EI-Wardani, T., 1987, “A New Approach to Development of a Grinding Force Model,” ASME J. of Eng. for Ind., Vol. 109, pp. 306-313.
    [10]Law, S. S. and Wu, S. S., “Simulation Study of the Grinding Process,” 1973, ASME Journal of Engineering for Industry, pp. 972-978.
    [11]Lortz, W., 1979, “A Model of the Cutting Mechanism in Grinding,” Wear, Vol.53, pp115-128, 1979.
    [12]廖運炫, 1990, “磨削加工之表面整合,” 機械工業雜誌, Vol. 206, pp.152-163.
    [13]邱能信, 陳鴻榮與陳永哲, 2001, “磨削表面之品質探討,” 中國機械工程學會第十八屆全國學術研討會論文集, pp.235-242.
    [14]林賜民, 鉬鉻合金鋼精密輪磨加工特性研究, 國立成功大學機械工程研究所, 八十三年碩士論文
    [15]Fuh, K. H. and Huang, J. S., 1992, “A Study of Force Model for Creep Feed Grinding,” J. of Chinese Society of Mechanical Eng., Vol. 13, pp.249-257.
    [16]Fuh, K.H. and Wang, S.B., 1997, “Force Modeling and Forecasting in Creep Feed Grinding Using Improved by Neural Network,” Int. J. Mach. Tools Manufact. Vol. 37, No. 8, pp. 1167-1178.
    [17]Torrance, A.A. and Tbuckley, T.R., 1996, “A Slip-line Field Model of Abrasive Wear,” Wear, Vol. 196, pp. 35-45.
    [18]Challen, J.M. and Oxley, L.B., 1979, “An Explanation of The Different regimes of Friction and Wear Using Asperity Deformation Models,” Wear, Vol. 53, pp. 229-243.
    [19]Xie, Y. and Williams, J.A., 1996, “The Prediction of Friction and Wear When a Soft Surface Slides Against a Harder Rough Surface,” Wear, Vol. 196, pp. 21-34.
    [20]Xie, Y. and Williams, J.A., 1993, “The Generation of Worn Surfaces by The Repeated Interaction of Parallel Grooves,” Wear, Vol. 162-164, pp. 864-872.
    [21]Xie, Y. and Williams, J.A., 1992, “The Generation of Wear Surfaces by The Interaction of Parallel Grooves,” Wear, Vol. 155, pp. 363-379.
    [22]蘇耀慶, 磨削加工捲積力學模式之分析與實驗, 國立成功大學機械工程研究所, 八十五年碩士論文
    [23]Wang, J.-J. Junz, Liang, S. Y. and Book, W. J., 1994, “Convolution Analysis of Milling Force Pulsation,” ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.
    [24]Wang, J.-J. Junz, and Zheng, C.M., 2002, “An Analytical Force Model With Shearing and Ploughing Mechanisms for End Milling,” International Journal of Machine Tools & Manufacture, Vol. 42, pp. 761-771.
    [25]Alawi, H., and Younis, M. A., 1986, “Probabilistic approach to the Conformity of Wheel-Work in Griding Process,” Int. J. Prod. Res. Vol.24, pp. 279-290.

    下載圖示 校內:立即公開
    校外:2002-07-18公開
    QR CODE