| 研究生: |
張歐穰 Chang-Ou, Jang |
|---|---|
| 論文名稱: |
應用於可見光下分解水之In1-xNixMO4 ( M = Nb, Ta; x = 0, 0.1, 0.3 )光觸媒之製備與特性研究 Synthesis and properties of In1-xNixMO4 ( M = Nb, Ta ; x = 0, 0.1, 0.3 ) photocatalysts applied under visible light for water splitting |
| 指導教授: |
黃啟祥
Huang, Chi-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | InNiTaO4 、光觸媒 、含浸法 、可見光 、分解水 |
| 外文關鍵詞: | InNiTaO4, photocatalyst, impregnation method, water splitting, visible light |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
晶體為wolframite結構之InTaO4光觸媒粉末可在可見光的波長下受光激發而將水分解為氫氣與氧氣。為改善此晶體結構的觸媒特性,本研究藉由固態法與含浸法製備雜Ni的In1-xNixTaO4光觸媒粉末,並檢討其微結構與分解水之效率。
In1-xNixTaO4光觸媒粉末在可見光的照射之下,其分解水之效率,會隨著煆燒持溫時間的增加而增加、隨著分解水反應溫度之增加而增加、隨著分解水反應時間的增加而降低;在起始的三到五個小時內有最佳分解效率。整體而言,含浸法製備之光觸媒粉末比固態法有較佳之分解水效率。在40℃下反應5個小時後,以含浸法製備之In1-xNixTaO4粉末可分解水產生110μmole之氣體,此為本研究中最佳之數據。
經由X光繞射分析,得知以含浸法雜Ni之In1-xNixTaO4粉末比固態法有較多雜的Ni進入晶格並取代In,此結果應是導致含浸法粉末有較佳分解水效率之主要因素。
An InTaO4 photocatalyst with wolframite structure can split water into oxygen and hydrogen under visible light irradiation. In order to improve the catalytic properties of this catalyst, In1-xNixTaO4 photocatalysts were synthesized by solid state method and impregnation method. The microstructure and efficiency of water-splitting of these photocatalysts were investigated.
The efficiency of water-splitting of In1-xNixTaO4 photocatalysts under visible light irradiation increases as increasing soaking time of calcinations and increasing reaction temperation, decreases as continuous reaction time of water-splitting, and shows better efficiency at beginning 5 h. In this research, photocatalysts prepared by impregnation show better efficiency than by solid state method one. The best result of gas evolved from water-splitting is 110μmole of In1-xNixTaO4 photocatalysts synthesized by impregnation method react under visible light irradiation at 40℃ for 5 h.
By the x-ray diffraction analysis, we know that there are more Ni doped into In1-xNixTaO4 and substituted In site when prepared by impregnation method than by solid state method. This may leads to better efficiency of water-splitting of photocatalysts prepared by impregnation method.
[1] K. Honda, A. Fujishima, “Electrochemical photolysis of water at a semiconductor
electrode”, Nature, 238, 37-38 (1972).
[2] N. Serpone, “Brief introductory remarks on heterogeneous photocatalysis”, Solar
Energy Materials and Solar Cells, 38, 369-379 (1995).
[3] M. I. Litter, “Review Heterogeneous photocatalysis transition metal ions in
photocatalytic systems”, Applied Catalysis B: Environmental, 23, 89-114 (1999).
[4] 謝永旭, “光催化處理程序”, 工業污染防治, 56, 173-191 (1995).
[5] A. Mills and S. Le Hunte, “An overview of semiconductorphotocatalysis”,
Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35 (1997).
[6] Zou ZG, Ye JH, Sayama K, Arakawa H, “Direct splitting of water under visible
light irradiation with an oxide semiconductor photocatalyst”, Nature, 414, 625-627
(2001).
[7] 賴政國, “生化消毒劑之淺談比較”, 核生化防護季刊, 76(5) (2003).
[8] 王志光, “以二氧化鈦為主的可見光觸媒發展與基本原理”, 工業材料雜誌,
201, 155-163 (2003)
[9] 羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”,
成功大學碩士論文92年畢業
[10] Gouva Carlos A. K., Wypych, Fernando, Moraes Sandra G., Durn Nelson,
Peralta-Zamora Patricio, “Semiconductor-assisted photodegradation of lignin,
dye, and kraft effluent by Ag-doped ZnO“, Chemosphere, 40(4), 427-432
(2000).
[11] Ashokkumar M., “An overview on semiconductor particulate systems for
photoproduction of hydrogen”, International Journal of Hydrogen energy, 23(6),
427-438 (1998)
[12] Liu Bi-Jin, Torimoto Tsukasa, Yoneyama Hiroshi, “Photocatalytic reduction of
CO2 using surface-modified CdS photocatalysts in organic solvents”, Journal of
Photochemistry and Photobiology A: Chemistry, 113(1), 93-97 (1998)
[13] Akihiko Kudo, Hideki Kato, Seira Nakagawa, “Water Splitting into H2 and O2
on New Sr2M2O7 ( M = Nb and Ta ) Photocatalysts with Layered Perovskite
Structures: Factors Affecting the Photocatalytic Activity”, Journal of
physical chemistry B, 104(3), 571-575 (2000)
[14] R. Asaha, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light
Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293(5528),
(2001).
[15] Takeshi Morikawa, Ryoji Asahi, Koyu Aoki, Takeshi Ohwaki, Kenichi Suzuki,
Hideyuki Masaki, Yasunori Taga, “Nitrogen-Doped Titanium Dioxide
Photocatalyst for Visible Light Applications”, JFCA.
[16] Clemens Burda, Yongbing Lou, Xiaobo Chen, Anna C. S. Samia, John Stout,
James L. Gole, “Enhanced Nitrogen Doping in TiO2 Nanaparticles”, Nano
letters, 3 (8), 1049-1051 (2003).
[17] S. Mozia, M. Tomaszewska, B. Kosowska, et al., “Decomposition of nonionic
surfactant on a nitrogen-doped photocatalyst under visible-light irradiation”,
applied catalysis B-Environmental, 55 (3), 195-200 (2005).
[18] H. Irie, Y. Watanabe , K. Hashimoto, “Carbon-doped anatase TiO2 powders as a
visible-light sensitive photocatalyst”, Chemistry letters, 32 (8), 772-773 (2003).
[19] T. Ohno , T. Tsubota, M. Toyofuku , et al., “Photocatalytic activity of a TiO2
photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible
light”, Catalysis letters, 98 (4), 255-258 (2004).
[20] Liu HY, Gao L, “S-doped rutile TiO2 visible-light activated photocatalyst by in
situ wet chemical synthesis method”, Journal of inorganic materials, 20 (2),
470-474 (2005).
[21] Y. Sakatani , H. Ando , K. Okusako , et al., “Metal ion and N co-doped TiO2 as
a visible-light photocatalyst”, Journal of materials research, 19 (7), 2100-2108
(2004).
[22] Jinhua Ye, Zhigang Zou, Akiyuki Matsushita, “A novel series of water splitting
photocatalysts NiM2O6 ( M = Nb, Ta ) active under visible light”, International
Journal of Hydrogen Energy, 28, 651-655 (2003).
[23] A. Kudo, M. Sekizawa, “Photocatalytic H2 evolution under visible light
irradiation on Ni-doped ZnS photocatalyst”, Chemical communications, 15,
1371-1372 (2000).
[24] Hwang DW, Kim J, Park TJ, et al., “Mg-doped WO3 as a novel photocatalyst for
visible light-induced water splitting”, Catalysis letters, 80 (1-2), 53-57 (2002).
[25] G. Hitoki, T. Takata, JN. Kondo, et al., “An oxynitride, TaON, as an efficient
water oxidation photocatalyst under visible light irradiation (lambda <= 500
nm)”, Chemical communications, 16, 1698-1699, (2002).
[26] M. Hara, J. Nunoshige, T. Takata, et al., “Unusual enhancement of H-2 evolution
by Ru on TaON photocatalyst under visible light irradiation”, Chemical
communications, 24, 3000-3001 (2003).
[27] S. Ito, KR. Thampi, P. Comte, et al., “Highly active meso-microporous TaON
photocatalyst driven by visible light”, Chemical communications, 2, 268-270
(2005).
[28] Zou ZG, Ye JH, Sayama K, Arakawa H, “Photocatalytic hydrogen and oxygen
formation under visible light irradiation with M-doped InTaO4 ( M = Mn, Fe, Co,
Ni and Cu ) photocatalysts”, Journal of Photochemistry and Photobiology A:
Chemistry, 148, 65-69 (2002).
[29] H. Reiche, W. W. Dunn, A. J. Bard, “Heterogeneous photocatalytic and
photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide
powders”, Journal of physical chemistry, 83, 2248 (1979).
[30] N. Buhler, K. Meier, J. F. Reber, “Photochemical hydrogen production with
cadmium sulfide suspensions”, Journal of physical chemistry, 88, 3261 (1984).
[31] P. Maruthamuthu, M. Ashokkumar, “Doping effects of transition metal ions on
the photosensitization of WO3 particles ”, Solar Energy Materials, 17, 433
(1988).
[32] P. Maruthamuthu, M. Ashokkumar, “Hydrogen generation using Cu(II)/WO3
and oxalic acid by visible light”, International Journal of Hydrogen Energy, 13,
677 (1988).
[33] P. Maruthamuthu, M. Ashokkumar, “Hydrogen production with visible light
using metal loaded-WO3 and MV2+ in aqueous medium”, International Journal
of Hydrogen Energy, 14, 275 (1989).
[34] T. Sakata, K. Hashimoto, T. Kawai, “Catalytic properties of ruthenium oxide on
n-type semiconductors under illumination”, Journal of physical chemistry, 88,
5214 (1984).
[35] M. Taquikhan, R. C. Bhardwaj, C. Bhardwaj, “Photodecomposition of H2S by
silver doped cadmium sulfide and mixed sulfides with ZnS ”, International
Journal of Hydrogen Energy, 13, 7 (1988).
[36] D. H. M. W. Thewissen, A. H. A. Tinnemans, M. E. Reinten, K. Timmer,
A. Mackor, Nouveau Journal de Chimie, 7, 191 (1983).
[37] Y. Nosaka, Y. Ishizuka, H. Miyama, Berichte der Bunsen-Gesellschaft fur
Physikalische Chemie, 90, 1199 (1986).
[38] J. Kobayashi, K. Kitaguchi, H. Tanaka, H. Tsuiki, A. Ueno, Journal of the
Chemical Society. Faraday Transactions I, 83, 1395 (1987)
[39] A. Sobczynski, A. J. Bard, A. Champion, M. A. Fox, T. Mallouk, S. E. Webber,
J. M. White, “Photoassisted hydrogen generation: platinum and cadmium sulfide
supported on separate particles”, Journal of physical chemistry, 91, 3316 (1987).
[40] Zou ZG, Ye JH, Arakawa H, “Effect of Ni substitution on the structure and
photocatalytic activity of InTaO4 under visible light irradiation”, Journal of
Materials Research, 17(6), 1419 (2002)
[41] http://www.chemtech.com.tw/Column.php?mode=detail&id=75