簡易檢索 / 詳目顯示

研究生: 張歐穰
Chang-Ou, Jang
論文名稱: 應用於可見光下分解水之In1-xNixMO4 ( M = Nb, Ta; x = 0, 0.1, 0.3 )光觸媒之製備與特性研究
Synthesis and properties of In1-xNixMO4 ( M = Nb, Ta ; x = 0, 0.1, 0.3 ) photocatalysts applied under visible light for water splitting
指導教授: 黃啟祥
Huang, Chi-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 70
中文關鍵詞: InNiTaO4光觸媒含浸法可見光分解水
外文關鍵詞: InNiTaO4, photocatalyst, impregnation method, water splitting, visible light
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   晶體為wolframite結構之InTaO4光觸媒粉末可在可見光的波長下受光激發而將水分解為氫氣與氧氣。為改善此晶體結構的觸媒特性,本研究藉由固態法與含浸法製備雜Ni的In1-xNixTaO4光觸媒粉末,並檢討其微結構與分解水之效率。
      In1-xNixTaO4光觸媒粉末在可見光的照射之下,其分解水之效率,會隨著煆燒持溫時間的增加而增加、隨著分解水反應溫度之增加而增加、隨著分解水反應時間的增加而降低;在起始的三到五個小時內有最佳分解效率。整體而言,含浸法製備之光觸媒粉末比固態法有較佳之分解水效率。在40℃下反應5個小時後,以含浸法製備之In1-xNixTaO4粉末可分解水產生110μmole之氣體,此為本研究中最佳之數據。
      經由X光繞射分析,得知以含浸法雜Ni之In1-xNixTaO4粉末比固態法有較多雜的Ni進入晶格並取代In,此結果應是導致含浸法粉末有較佳分解水效率之主要因素。

     An InTaO4 photocatalyst with wolframite structure can split water into oxygen and hydrogen under visible light irradiation. In order to improve the catalytic properties of this catalyst, In1-xNixTaO4 photocatalysts were synthesized by solid state method and impregnation method. The microstructure and efficiency of water-splitting of these photocatalysts were investigated.
     The efficiency of water-splitting of In1-xNixTaO4 photocatalysts under visible light irradiation increases as increasing soaking time of calcinations and increasing reaction temperation, decreases as continuous reaction time of water-splitting, and shows better efficiency at beginning 5 h. In this research, photocatalysts prepared by impregnation show better efficiency than by solid state method one. The best result of gas evolved from water-splitting is 110μmole of In1-xNixTaO4 photocatalysts synthesized by impregnation method react under visible light irradiation at 40℃ for 5 h.
     By the x-ray diffraction analysis, we know that there are more Ni doped into In1-xNixTaO4 and substituted In site when prepared by impregnation method than by solid state method. This may leads to better efficiency of water-splitting of photocatalysts prepared by impregnation method.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 目錄……………………………………………………………………Ⅲ 表目錄…………………………………………………………………VII 圖目錄…………………………………………………………………VIII 第一章 緒論……………………………………………………………1 第二章 理論基礎與文獻回顧…………………………………………6 2-1 觸媒特質……………………………………………………………6 2-2 光觸媒特質…………………………………………………………6 2-3 光觸媒分類…………………………………………………………7 2-3-1 紫外光光觸媒……………………………………………………7 2-3-1-1二氧化鈦光觸媒(TiO2)……………………………………8 2-3-1-2 氧化鋅光觸媒(ZnO)………………………………………8 2-3-1-3 硫化鎘光觸媒(CdS)………………………………………9 2-3-1-4 Sr2M2O7(M = Nb, Ta)光觸媒………………………………9 2-3-2 可見光光觸媒……………………………………………………9 2-3-2-1 改質二氧化鈦光觸媒(modified TiO2)……………………9 2-3-2-2 NiM2O6(M = Ta, Nb)光觸媒………………………………10 2-3-2-3 改質硫化鋅光觸媒(modified ZnS)…………………………10 2-3-2-4 改質氧化鎢光觸媒(modified WO3)………………………10 2-3-2-5 TaON光觸媒……………………………………………………10 2-4 光觸媒作用機制……………………………………………………10 2-4-1 半導體特性………………………………………………………10 2-4-2光觸媒作用原理與過程…………………………………………11 2-4-3光觸媒材料的設計………………………………………………11 2-4-4 摻雜過渡金屬離子於光觸媒的特性……………………………13 2-5 比表面積與觸媒效率之關係………………………………………13 2-6 助觸媒(co-catalyst)………………………………………………14 2-7 近代製備微粒觸媒之研究…………………………………………15 2-7-1 固相法……………………………………………………………15 2-7-2 含浸法……………………………………………………………15 第三章 實驗方法及步驟………………………………………………19 3-1 實驗用起始原料……………………………………………………19 3-2 合成粉末之命名……………………………………………………20 3-3 光觸媒粉末之製……………………………………………………20 3-3-1 InMO4(M=Nb, Ta)光觸媒粉末之製備………………………20 3-3-2 In0.9Ni0.1MO4光觸媒粉末之製備………………………………21 3-4粉末性質檢測及分析方法…………………………………………22 3-5 觸媒分解特性的量測………………………………………………25 第四章 結果與討論……………………………………………………34 4-1 粉末之結晶相分析…………………………………………………34 4-1-1 InMO4(M = Nb, Ta)相鑑定……………………………………34 4-1-2 In1-xNixTaO4光觸媒粉末………………………………………34 4-1-3 結晶粒徑(crystallite size)……………………………………35 4-1-4 繞射峰繞射角度之變化與晶格常數之改變……………………36 4-2 粒子型態分析………………………………………………………37 4-3 比表面積分析………………………………………………………37 4-4 吸收光譜測試………………………………………………………38 4-5 氣象層析檢測………………………………………………………38 4-6 水分解測試…………………………………………………………39 4-6-1 反應溫度對觸媒效率之影響……………………………………40 4-6-2 雜Ni的量對觸媒粉末分解效率之影響………………………40 4-6-3 製備方法對光觸媒粉末分解效率之影響………………………41 第五章 結論……………………………………………………………64 參考文獻………………………………………………………………66

    [1] K. Honda, A. Fujishima, “Electrochemical photolysis of water at a semiconductor
      electrode”, Nature, 238, 37-38 (1972).
    [2] N. Serpone, “Brief introductory remarks on heterogeneous photocatalysis”, Solar
      Energy Materials and Solar Cells, 38, 369-379 (1995).
    [3] M. I. Litter, “Review Heterogeneous photocatalysis transition metal ions in
      photocatalytic systems”, Applied Catalysis B: Environmental, 23, 89-114 (1999).
    [4] 謝永旭, “光催化處理程序”, 工業污染防治, 56, 173-191 (1995).
    [5] A. Mills and S. Le Hunte, “An overview of semiconductorphotocatalysis”,
      Journal of Photochemistry and Photobiology A: Chemistry, 108, 1-35 (1997).
    [6] Zou ZG, Ye JH, Sayama K, Arakawa H, “Direct splitting of water under visible
      light irradiation with an oxide semiconductor photocatalyst”, Nature, 414, 625-627
      (2001).
    [7] 賴政國, “生化消毒劑之淺談比較”, 核生化防護季刊, 76(5) (2003).
    [8] 王志光, “以二氧化鈦為主的可見光觸媒發展與基本原理”, 工業材料雜誌,
      201, 155-163 (2003)
    [9] 羅靖堯, “利用超臨界流體製備氧化鋅奈米粒子及其抗菌能力研究”,
      成功大學碩士論文92年畢業
    [10] Gouva Carlos A. K., Wypych, Fernando, Moraes Sandra G., Durn Nelson,
      Peralta-Zamora Patricio, “Semiconductor-assisted photodegradation of lignin,
      dye, and kraft effluent by Ag-doped ZnO“, Chemosphere, 40(4), 427-432
      (2000).
    [11] Ashokkumar M., “An overview on semiconductor particulate systems for
      photoproduction of hydrogen”, International Journal of Hydrogen energy, 23(6),
      427-438 (1998)
    [12] Liu Bi-Jin, Torimoto Tsukasa, Yoneyama Hiroshi, “Photocatalytic reduction of
      CO2 using surface-modified CdS photocatalysts in organic solvents”, Journal of
      Photochemistry and Photobiology A: Chemistry, 113(1), 93-97 (1998)
    [13] Akihiko Kudo, Hideki Kato, Seira Nakagawa, “Water Splitting into H2 and O2
      on New Sr2M2O7 ( M = Nb and Ta ) Photocatalysts with Layered Perovskite
      Structures: Factors Affecting the Photocatalytic Activity”, Journal of
      physical chemistry B, 104(3), 571-575 (2000)
    [14] R. Asaha, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, “Visible-Light
      Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science, 293(5528),
      (2001).
    [15] Takeshi Morikawa, Ryoji Asahi, Koyu Aoki, Takeshi Ohwaki, Kenichi Suzuki,
      Hideyuki Masaki, Yasunori Taga, “Nitrogen-Doped Titanium Dioxide
      Photocatalyst for Visible Light Applications”, JFCA.
    [16] Clemens Burda, Yongbing Lou, Xiaobo Chen, Anna C. S. Samia, John Stout,
      James L. Gole, “Enhanced Nitrogen Doping in TiO2 Nanaparticles”, Nano
      letters, 3 (8), 1049-1051 (2003).
    [17] S. Mozia, M. Tomaszewska, B. Kosowska, et al., “Decomposition of nonionic
      surfactant on a nitrogen-doped photocatalyst under visible-light irradiation”,
      applied catalysis B-Environmental, 55 (3), 195-200 (2005).
    [18] H. Irie, Y. Watanabe , K. Hashimoto, “Carbon-doped anatase TiO2 powders as a
      visible-light sensitive photocatalyst”, Chemistry letters, 32 (8), 772-773 (2003).
    [19] T. Ohno , T. Tsubota, M. Toyofuku , et al., “Photocatalytic activity of a TiO2
      photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible
      light”, Catalysis letters, 98 (4), 255-258 (2004).
    [20] Liu HY, Gao L, “S-doped rutile TiO2 visible-light activated photocatalyst by in
      situ wet chemical synthesis method”, Journal of inorganic materials, 20 (2),
      470-474 (2005).
    [21] Y. Sakatani , H. Ando , K. Okusako , et al., “Metal ion and N co-doped TiO2 as
      a visible-light photocatalyst”, Journal of materials research, 19 (7), 2100-2108
      (2004).
    [22] Jinhua Ye, Zhigang Zou, Akiyuki Matsushita, “A novel series of water splitting
      photocatalysts NiM2O6 ( M = Nb, Ta ) active under visible light”, International
      Journal of Hydrogen Energy, 28, 651-655 (2003).
    [23] A. Kudo, M. Sekizawa, “Photocatalytic H2 evolution under visible light
      irradiation on Ni-doped ZnS photocatalyst”, Chemical communications, 15,
      1371-1372 (2000).
    [24] Hwang DW, Kim J, Park TJ, et al., “Mg-doped WO3 as a novel photocatalyst for
      visible light-induced water splitting”, Catalysis letters, 80 (1-2), 53-57 (2002).
    [25] G. Hitoki, T. Takata, JN. Kondo, et al., “An oxynitride, TaON, as an efficient
      water oxidation photocatalyst under visible light irradiation (lambda <= 500
      nm)”, Chemical communications, 16, 1698-1699, (2002).
    [26] M. Hara, J. Nunoshige, T. Takata, et al., “Unusual enhancement of H-2 evolution
      by Ru on TaON photocatalyst under visible light irradiation”, Chemical
      communications, 24, 3000-3001 (2003).
    [27] S. Ito, KR. Thampi, P. Comte, et al., “Highly active meso-microporous TaON
      photocatalyst driven by visible light”, Chemical communications, 2, 268-270
      (2005).
    [28] Zou ZG, Ye JH, Sayama K, Arakawa H, “Photocatalytic hydrogen and oxygen
      formation under visible light irradiation with M-doped InTaO4 ( M = Mn, Fe, Co,
      Ni and Cu ) photocatalysts”, Journal of Photochemistry and Photobiology A:
      Chemistry, 148, 65-69 (2002).
    [29] H. Reiche, W. W. Dunn, A. J. Bard, “Heterogeneous photocatalytic and
      photosynthetic deposition of copper on Titanium dioxide and tungsten(VI) oxide
      powders”, Journal of physical chemistry, 83, 2248 (1979).
    [30] N. Buhler, K. Meier, J. F. Reber, “Photochemical hydrogen production with
      cadmium sulfide suspensions”, Journal of physical chemistry, 88, 3261 (1984).
    [31] P. Maruthamuthu, M. Ashokkumar, “Doping effects of transition metal ions on
      the photosensitization of WO3 particles ”, Solar Energy Materials, 17, 433
      (1988).
    [32] P. Maruthamuthu, M. Ashokkumar, “Hydrogen generation using Cu(II)/WO3
      and oxalic acid by visible light”, International Journal of Hydrogen Energy, 13,
      677 (1988).
    [33] P. Maruthamuthu, M. Ashokkumar, “Hydrogen production with visible light
      using metal loaded-WO3 and MV2+ in aqueous medium”, International Journal
      of Hydrogen Energy, 14, 275 (1989).
    [34] T. Sakata, K. Hashimoto, T. Kawai, “Catalytic properties of ruthenium oxide on
      n-type semiconductors under illumination”, Journal of physical chemistry, 88,
      5214 (1984).
    [35] M. Taquikhan, R. C. Bhardwaj, C. Bhardwaj, “Photodecomposition of H2S by
      silver doped cadmium sulfide and mixed sulfides with ZnS ”, International
      Journal of Hydrogen Energy, 13, 7 (1988).
    [36] D. H. M. W. Thewissen, A. H. A. Tinnemans, M. E. Reinten, K. Timmer,
      A. Mackor, Nouveau Journal de Chimie, 7, 191 (1983).
    [37] Y. Nosaka, Y. Ishizuka, H. Miyama, Berichte der Bunsen-Gesellschaft fur
      Physikalische Chemie, 90, 1199 (1986).
    [38] J. Kobayashi, K. Kitaguchi, H. Tanaka, H. Tsuiki, A. Ueno, Journal of the
      Chemical Society. Faraday Transactions I, 83, 1395 (1987)
    [39] A. Sobczynski, A. J. Bard, A. Champion, M. A. Fox, T. Mallouk, S. E. Webber,
      J. M. White, “Photoassisted hydrogen generation: platinum and cadmium sulfide
      supported on separate particles”, Journal of physical chemistry, 91, 3316 (1987).
    [40] Zou ZG, Ye JH, Arakawa H, “Effect of Ni substitution on the structure and
      photocatalytic activity of InTaO4 under visible light irradiation”, Journal of
      Materials Research, 17(6), 1419 (2002)
    [41] http://www.chemtech.com.tw/Column.php?mode=detail&id=75

    下載圖示 校內:2007-07-14公開
    校外:2007-07-14公開
    QR CODE