簡易檢索 / 詳目顯示

研究生: 鄔文傑
Wu, Wen-jie
論文名稱: MP3與MPEG-4 AAC解碼器在SCREAM DSP-16上的實作與加速研究
An Efficient Implementation of MP3 and MPEG-4 AAC Decoder on SCREAM DSP-16
指導教授: 蘇文鈺
Su, Wen Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 解碼器
外文關鍵詞: DSP, MPEG-4 AAC, MP3
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MP3(MPEG-1/Audio Layer 3)和MPEG-4 先進音訊編碼(AAC)是由ISO/IEC MPEG (Moving Picture Expert Group)所制定的多媒體音訊壓縮標準,提供了非常優秀的壓縮效率。MP3是目前所使用最普遍的壓縮技術,而MPEG-4 AAC (Advanced Audio Coding)的基本架構和MPEG-2 AAC相同,只是多加入了一些工具來提高編碼的效率,以本論文會先介紹MPEG-1 Layer 3以及MPEG-2 AAC,最後再針對MPEG-4 AAC中的Low Complexity Profile實作來做說明。

    越來越多音訊壓縮的解碼器在嵌入式系統中被廣泛的使用,大部分在這類電子產品中,會使用一個數位訊號處理器來加速解碼器中的運算。SCREAM DSP-16是一個由成功大學音樂與多媒體系統實驗室修改Analog Device DSP 2191指令集所開發的數位訊號處理器,本論文即提出了在SCREAM DSP-16上面實作MP3與MPEG-4 AAC解碼器的方法。

    在DSP的實現部份,會遇到最多的問題就是在於計算複雜度以及如何使用有限的記憶體空間,在本論文中會針對計算複雜度高的部分使用組語來加速,以及利用SCREAM DSP-16所提供的加速法,和記憶體空間減少的方法來撰寫本論文。最後經由我們的加速以及系統的實現,MP3以及MPEG-4 AAC解碼器均可以在SCREAM DSP-16上達到即時解碼的效果。

    MP3(MPEG-1/Audio Layer 3)and MPEG-4 Advanced Audio Coding (AAC) is the multimedia audio compression standard defined by ISO/IEC MPEG (Moving Picture Expert Group), and it provides an outstanding coding efficiency. Now, MP3 is the most popular audio compression codec around the world.The basic structure of MPEG-4 AAC is the same as that of MPEG-2 AAC, but it has many new tools to improve its coding efficiency. For example, this thesis will introduce MPEG-1 Layer 3 and MPEG-2 AAC, then selects the implementation of MPEG-4 AAC Low Complexity Profile.

    There is wide demand for audio decoder built around embedded systems. In the most case, this kind of consumer electronics use a Digital Signal Processor to speed up the computation essential to decoder. SCREAM DSP-16 is a DSP based on Analog Device DSP 2191 instructions, and is developed by Scream LAB of National Cheng-Kung University. In this thesis, several techniques are proposed to implement MP3 decoder and MPEG-4 AAC decoder on
    SCREAM DSP-16.

    Computation complexity and how to use limited memory space are the most difficult problem we meet. In this thesis, we rewrite our source code in assembly language to speed up and use some technique to improve memory utilization. Finally, the speed of the MP3 decoder and MPEG-4 AAC decoder on our SCREAM DSP-16 implementation can achieve real time operation.

    【摘要】 I 【ABSTRACT】 II 【誌謝】 IV 【章節目錄】 VI 【圖目錄】 IX 【表目錄】 I 【公式目錄】 II 【第一章】 緒論 1 1.1 研究背景及動機 1 1.2 各章節概述 3 【第二章】 人類音響心理學模型 4 2.1 臨界頻帶(CRITICAL BANDS) 4 2.2 靜音門檻曲線(HEARING THRESHOLD) 6 2.3 聽覺範圍(HEARING RANGE) 8 2. 4 遮蔽效應(MASKING EFFECT) 9 【第三章】 MPEG-1AUDIO LAYER 3解碼流程介紹 11 3.1 HISTORY 11 3.2 MP3 DECODING FLOW 12 3.3 MP3 BITSTREAM FORMAT 13 3.4 HEADER 14 3.5 SIDE INFORMATION 17 3.6 CRC 19 3.7 MAIN DATA 20 3.8 ANCILLARY DATA 20 3.9 BIT RESERVOIR 20 3.10 SCALE FACTOR DECODING 22 3.11 HUFFMAN DECODING 23 3.12 INVERSE QUANTIZATION 26 3.13 REORDERING 27 3.14 ( JOINT ) STEREO 28 3.15 ALIASING CANCELLATION 29 3.16 HYBRID SYNTHESIS 31 3.17 SUBBAND SYNTHESIS 34 【第四章】 MPEG-4 AAC解碼流程介紹 36 4.1 MPEG-4 AAC簡介 36 4.2資料串流的構成 42 4.3無失真編碼 44 4.3.1 霍夫曼表 44 4.3.2 Sectioning 45 4.3.3 Grouping & Interleaving 46 4.4 反量化 49 4.5 PERCEPTUAL NOISE SUBSTITUTION 50 4.6 雙聲道的處理 52 4.6.1 Mid/Side Stereo Coding 52 4.6.2 Intensity Stereo Coding 52 4.7 TEMPORAL NOISE SHAPING 53 4.8 反向濾波器組 55 4.8.1 窗框形狀的轉換 57 4.8.2 音訊區塊大小的轉換 58 【第五章】 SCREAM DSP-16 60 5.1 SCREAM DSP-16簡介 61 5.2 SCREAM DSP-16暫存器 64 5.2.1 運算暫存器 64 5.2.2 定址暫存器 69 5.2.3 程式控制暫存器 71 【第六章】 程式開發 73 6.1 MP3 浮點術版本的開發 74 6.1.1 IMDCT的化簡 74 6.1.2 Subband Synthesis的化簡 76 6.2 MPEG-4 AAC 浮點數版本的開發 79 6.3 VISUAL DSP++定點數版本的開發 83 6.3.1 20.25x的逼近方法 84 6.3.2 x(4/3)的逼近方法 85 6.3.3 平方根的逼近方法 86 6.3.4 減少記憶體的使用量 87 6.4 組合語言版本的開發 89 6.4.1 讀寫 89 6.4.2 加減法 90 6.4.3 乘法 91 6.4.4 迴圈 92 6.4.5 Critical Function 94 6.4.6 MPEG-4 AAC Inverse Quantization 96 6.4.7 MPEG-4 AAC Inverse Filterbank 96 6.5 實驗結果 98 【第七章】結論與未來展望 101 7.1 結論 101 7.2 未來展望 101 【參考資料】 102 【附錄A】 – SCREAM DSP-16 ALU指令 105 【附錄B】 – SCREAM DSP-16 MAC指令 107 【附錄C】 – SCREAM DSP-16 SHT指令 108 【附錄D】 – SCREAM DSP-16 控制指令 109

    [1] ISO/IEC 11172-3: 1993, Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s – Part 3:Audio.

    [2] K. Brandenburg and G. Stoll, “ISO-MPEG-1 Audio:a generic standard for coding of high quality digitalaudio”, In N. Gilchrist and Ch. Grewin, editors, Collected Papers on Digial Audio Bit-Rate Reduction,pages 31 – 42. AES, 1996.

    [3] Ted Painter, Student Member IEEE, and Andreas Spanias, Senior Member IEEE, “Perceptual Coding of Digital Audio”, Deapartment of Electrical Engineering, Telecommunications Research Center Arizona State University,

    [4] ISO/IEC 13818–7: 1997, Information technology – Generic coding of moving pictures and associated audio information.

    [5] M. Bosi, K. Brandenburg, Sch. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M. Dietz, J. Herre, G. Davidson, and Yoshiaki Oikawa, “ISO/IEC MPEG-2 Advanced Audio Coding.”, in Proc. of the 101st AES Convention, pp. 789-814, 1996.

    [6] ISO/IEC 14496–3: 2005, Information technology – Coding of audio-visual objects – Part 3 : Audio.

    [7] Jurgen Herre, Donald Schulz, ”Extending the MPEG-4 AAC Codec by Perceptual Noise Substitution”, Presented at the 104th Convention 1998 May 16-19 Amsterdam, AES

    [8] Donald Schulz, ”Improving Audio Codec by Noise Substitution”, Technische Hochschule, Fachgebiet Digitaltechnik, D-64283 Darmstadt, Germany, preprint 4720

    [9] Naoki Iwakami and Takehiro Moriya, “Transform-Domain Weighted Interleave Vector Quantization”, Presented at the 101th Convention 1996 November 8-11 Los Angeles, California, AES, pp. 593-597

    [10] Zhong-Ho Chen,“Portable DSP Development Environment For Embedded Real-Time System”, master thesis, National Cheng-Kung University, Taiwan, June, 2005.

    [11] Kent Salomonsen, Sten Sogaard, Eddie Proft Larsen, “Design and Implementaion of MPEG/Audio Layer III Bitstream Processor”, Aalborg University

    [12] Jiirgen Helve and James D. Johnston, “Enhancing the Performance of Perceptual Audio Coders by Using Temporal Noise Shaping (TNS)”, in Proc. of the 101st AES Convention, November 1996.

    [13] John P. Pricen, Alan Bernard Bradley, “Analysis/Synthesis Filter Bank Design Basedo n Time Domain Aliasing Cancellation”, IEEE Trans on ASSP, Oct 1986.

    [14] B. Edler, “Coding of Audio Signals with Overlapping Block Transform and Adaptive Window Functions”, Frequenz, vol. 43, pp. 252-256, 1989.

    [15] Analog Device Ltd., ADSP-219x DSP Hardware Reference.

    [16] Analog Device Ltd., ADSP-219x DSP Instruction Set Reference.

    [17] Analog Devices : Embedded Processing & DSP: Third Party Developers page for company - Epigon Media Technologies Pvt. Ltd.,
    http://dspcollaborative.analog.com/developers/DSP_CompanyListing.asp?c_id=30

    [18] Adaptive Digital's DSP Algorithms and Solutions,
    http://www.adaptivedigital.com/products/specs/aac_dec.htm

    [19] Konstantinos Konstantinides, Member IEEE, “Fast Subband Filtering in MPEG Audio Coding”, pp. 26-28

    [20] Vladimir Britanak, K. R. Rao, “An Efficient Implementation of the Forward and Inverse MDCT in MPEG Audio Coding”, IEEE signal processing letters, vol. 8, No. 2, February, 2001.

    [21] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Signal Processing, Prentice Hall, Second Edition.

    [22] AudioCoding.com, http://www.audiocoding.com/

    [23] Analog Device Ltd., VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-219x DSPs.

    [24] Harmonic Structure Quad Tree Audio Codec,
    http://scream.csie.ncku.edu.tw/~bff/HSQT.htm

    [Figure 2.2] Human Hearing Range
    http://sound.westhost.com/articles/fadb.htm
    [Figure 2.3] Frequency Masking Effect
    http://cs.uccs.edu/~cs525/audio/audio.html
    [Figure 2.4] Temperal Masking Effect
    參考資料中[3]論文中的圖片

    下載圖示 校內:2008-09-12公開
    校外:2008-09-12公開
    QR CODE