簡易檢索 / 詳目顯示

研究生: 黃稚鈞
Huang, Jhih-Jyun
論文名稱: 田口方法優化高功率熱源均溫性之水冷頭設計
Optimized Design of Water Cooling Block for Temperature Uniformity of High Power Heat Source by using Taguchi Method
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 田口方法水冷頭鰭片溫測實驗對流熱傳係數熱阻
外文關鍵詞: Taguchi method, Water cooling block, Fins, Thermal experiment, Heat convection coefficient, Thermal resistance
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為自行設計高功率CPU之水冷頭,並藉由田口方法改變水冷流道結構,解決熱源表面因溫度分布不均,使其效能降低的問題。
      首先透過降溫實驗與能量守恆定律計算環境的熱對流係數(h),作為模擬邊界條件。
      以市售水冷頭搭建溫測模組,實際量測散熱溫度,並以COMSOL Multiphysics軟體進行熱流場數值分析,代入前段熱對流係數,比較實驗與模擬之熱阻曲線,以實驗驗證軟體可靠性。
      接著重新設計適用高功率熱源水冷頭,改變流道內板式鰭片厚度與間距關係,以數值方法求得熱源表面中心最低溫搭配。
      最後利用田口方法提出針對流道結構的數個控制因子,進行模擬分析與統計,歸納使熱源具最佳均溫性之設計。
      結果證實可改善傳統結構水冷頭均溫性7.6%,並且整體溫度下降0.35℃。

    The purpose of this study is to design a water cooling block for high power CPU and change the water cooling flow channel structure by Taguchi method to solve the problem of non-uniformity temperature distribution on the surface of the heat source, which reduces its efficiency.
    First, the heat convection coefficient (h) of the environment is calculated by the cooling experiment and the law of energy conservation as the boundary condition for the simulation. The temperature measurement module is built with commercially available water cooling block to measure the actual heat dissipation temperature, and the COMSOL Multiphysics software is used to analyze the heat flow field value and substitute the heat convection coefficient in the previous section to compare the experimental and simulated thermal resistance curves for experimental verification of software reliability. Then, I redesigned the water cooling block for high power heat source and changed the thickness and spacing of the fins in the runner to obtain the minimum temperature match at the center of the heat source surface by numerical method. Finally, the Taguchi method was used to propose several control factors for the flow channel structure, and simulations and statistics were conducted to summarize the design of the heat source with the best temperature uniformity.
    The results proved to improve the temperature uniformity of conventional structured water cooling block by 7.6% and reduce the overall temperature by 0.35℃.

    摘要 ii Abstract iii 致謝 xv 目錄 xvi 表目錄 xx 圖目錄 xxi 符號索引 xxiv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與目的 2 1.2-1 水冷頭實驗與模擬分析 2 1.2-2 田口法優化熱源均溫性分析 2 1.3 文獻回顧 3 1.3-1 降溫實驗文獻 3 1.3-2 水冷頭模組參數文獻 4 1.3-3 模擬分析工具與田口方法使用文獻 5 第二章 陶瓷加熱片降溫實驗與模擬分析 16 2.1 實驗規劃 16 2.2 熱傳理論與分析方法 16 2.2-1 能量守恆定律(Law of conservation of energy) 16 2.2-2 統御方程式(Governing Equation) 17 2.2-3 熱對流係數(Convection heat transfer coefficient) 18 2.2-4 最小平方法(The method of least squares) 18 2.2-5 塊狀熱容法(Lump-heat capacity method) 19 2.3 實驗設備 19 2.3-1 GPP 3323電源供應器 20 2.3-2 陶瓷加熱片 20 2.3-3 Y500散熱膏與鐵氟龍膠帶 20 2.3-4 K-type熱電偶 20 2.3-5 Agilent 34970A資料擷取切換器與34901A 20通道多工器 20 2.3-6 OMEGA TRC III冰點校正器 21 2.3-7 OMEGA TL-WELD點焊機 21 2.4 模擬分析 21 2.4-1 COMSOL Multiphysics簡介 21 2.4-2 模擬設定流程 21 2.5 實驗結果與比較 22 2.5-1 降溫實驗結果 22 2.5-2 模擬驗證熱對流係數與降溫曲線關係 22 第三章 水冷頭實驗與模擬分析 32 3.1 實驗規劃與目標 32 3.2 分析方法 32 3.2-1 熱阻(Thermal Resistance) 32 3.3 實驗設備 33 3.3-1 GW GPR-7525HD電源供應器 33 3.3-2 YEONG SHIN P-50低溫循環水槽 33 3.3-3 NW10-TTN電子式流量計 33 3.3-4 WH-X122 12V微型無刷潛水泵 34 3.3-5 三通接頭與軟管、軟管夾環 34 3.4 模擬分析 34 3.4-1 物理模型建立 34 3.4-2 模型尺寸與溫測點 35 3.4-3 材料參數 35 3.4-4 模擬設定 35 3.5 實驗與模擬分析結果 36 3.5-1 實驗溫測結果 36 3.5-2 實驗與模擬結果比較 36 3.5-3 模擬結果熱源均溫性討論 36 第四章 田口法熱源均溫性分析 49 4.1 流道內鰭片厚度分析 49 4.1-1 模型尺寸 49 4.1-2 模擬設定 50 4.1-3 模擬結果 50 4.2 田口方法(Taguchi Methods) 50 4.2-1 穩健參數設計法(Robust Parameter Design) 51 4.2-2 直交表的建構(Construction of Orthogonal Arrays) 51 4.2-3 S/N 比(S/N Ratios) 52 4.2-4 田口方法的步驟(Steps of Taguchi Methods) 52 4.3 數據結果與資料分析 56 4.3-1 數據與S/N比 56 4.3-2 因子反應表與因子反應圖(Factor Response Table/Graph) 56 4.3-3 變異分析(Analysis of Variance) 56 4.3-4 設計最佳化(Design Optimization) 59 4.3-5 預測與確認實驗(Prediction and Confirmation Experiment) 59 4.3-6 信賴區間(Confidence Intervals) 60 第五章 結果與討論 80 5.1 降溫實驗與模擬分析探討 80 5.2 水冷頭實驗與模擬分析探討 81 5.3 田口法熱源均溫性探討 82 第六章 總結 87 參考文獻 89

    [1]劉坤穎, "分離式熱源對微通道熱沉的熱特性," 碩士論文, 國立交通大學機械工程學系, 臺灣, 2012.
    [2]訊凱國際股份有限公司, Cooler Master酷碼https://www.coolermaster.com/tw/zh-tw/, 2021.
    [3]冠昊股份有限公司, http://coolinghouse.com/technologies/liquid-cooling-cold-plate/?lang=zh-hant, 2010.
    [4]曜越科技, https://ttpremium.com.tw/, 2021.
    [5]A. Mills and S. Al-Hallaj, "Simulation of passive thermal management system for lithium-ion battery packs. ," Journal of Power Sources, vol. 141, no. 2, pp. 307-315, 2005.
    [6]江承翰, "21700鋰電池模組熱管理之實驗及模擬研究," 碩士論文, 國立成功大學工程科學系, 臺灣, 2018.
    [7]李俊賢, "半導體測試治具的水冷頭散熱性能研究," 碩士論文, 國立成功大學工程科學系, 臺灣, 2011.
    [8]陳律安, "電腦水冷散熱系統之效益研究," 碩士論文, 國立成功大學工程科學系, 臺灣, 2005.
    [9]林士堯, "以熱電致冷晶片改良電腦開放式水冷散熱系統的研究," 碩士論文, 國立成功大學工程科學系, 臺灣, 2019.
    [10]張竣廷, "不同間距與鰭片數量之多鰭片的對流熱傳係數分析," 碩士論文, 國立成功大學工程科學系, 臺灣, 2020.
    [11]R. Y. Chein, J. H. Chen, "Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance," International Journal of Thermal Sciences, 2009;48:1627-1638.
    [12]M. C. Lu, C. C. Wang, "Effect of the inlet location on the performance of parallel-channel cold-plate," Transactions on Components and Packaging Technologies, 2006;29:30-38.
    [13]S. A. Jajja, W. Ali, H. M. Ali, A. M. Ali, "Water cooled minichannel heat sinks for microprocessor cooling:Effect of fin spacing," Applied Thermal Engineering, 2014;64:76-82.
    [14]X. L. Xie, W. Q. Tao, Y. L. He, "Numerical study of turbulent heat transfer and pressure drop characteristics in a water- cooled minichannel heat sink," Journal of Electronic Packaging, 2007;129:247-255.
    [15]T. C. Hung, W. M. Yan, "Effects of tapered-channel design on performance of microchannel heat sink," International Journal of Heat and Mass Transfer, 2012;39:1342-1347.
    [16]李志良, "電腦CPU散熱器熱傳面積與流場對散熱效果影響之研究," 德霖學報, 17 2003.06, 223-230, 2003.
    [17]D. Ansari, A. Husain, and K. Y. Kim, "Optimization and Comparative Study on Oblique- and Rectangular-Fin Microchannel Heat Sinks," Journal of Thermophysics and Heat Transfer, 24(4), pp. 849-852, 2010.
    [18]李輝煌, 田口方法——品質設計的原理與實務, 高立圖書有限公司, 2010.
    [19]徐新迪, "應用田口法於衝擊冷卻下柱狀鰭片散熱器之最佳化數值研究," 碩士論文, 國立成功大學機械工程學系, 臺灣, 2009.
    [20]吳柏毅, "以田口分析方法試驗高週波壓U模具參數," 碩士論文, 國立成功大學工程科學系, 臺灣, 2020.
    [21]皮托科技股份有限公司, COMSOL Multiphysics電腦輔助分析模擬軟體學習寶典, 皮托科技股份有限公司, 2014.
    [22]王耀鋐, "COMSOL之凝固與熱傳問題分析," 碩士論文, 國立成功大學工程科學系, 臺灣, 2012.
    [23]高柏科技股份有限公司, https://www.tglobalcorp.com/tw/faq?page_id=11830, 2021.

    無法下載圖示 校內:2026-08-12公開
    校外:2026-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE