簡易檢索 / 詳目顯示

研究生: 黃貞翰
Huang, Chen-Han
論文名稱: 金屬奈米粒子之區域表面電漿共振於近場分析研究
Near Field Distribution of Localized Surface Plasmon Coupling in Metal Nanoparticles
指導教授: 崔祥辰
Chui, Hsiang-Chen
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 91
中文關鍵詞: 近場光學電漿子超快雷射
外文關鍵詞: near-field optics, plasmonics, ultrafast laser
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬奈米粒子存在特殊的光學效應,尤其會表現在於其物理與化學的獨特性,此效應與奈米粒子本身的大小尺寸,形狀等有非常大的關係。此現象是因為奈米粒子表面電子雲同時與電磁場之前產生共振的情況時會發生極為強烈的吸收以及再輻射現象與過程。這些現象已經被探討研究以及廣泛的應用在許多方面例如表面增強型光技術、生醫光學感測系統以及奈米光學原件。本論文的主要目的是利用近場光學掃瞄式顯微鏡來觀察與探討其區域性表面電將子共振的場增強與光場強分佈情況。首先觀察單顆奈米粒子其相位的變化情況,並使用不同的波長激發奈米粒子將其相位與增強情況做量化的分析。接下來並對於奈米粒子對之的交互作用做觀察,並對於其極化與距離做區域性場強分佈的近場影像量測與量化分析,並且利用側向激發模式來研究高階項的粒子電漿子共振模態並在不同波長激發下使用近場掃瞄式光學顯微鏡對其單極與多極模態做近場影像的分析。最後,我們發展了一套寬頻可調雷射掃瞄系統,期望能將上述的奈米粒子光學強化作用應用於生醫影像。

    It has been shown that metal nanoparticles exhibit distinct physical/chemical properties from their bulk counterparts due to plasmon resonance, which strongly depends on the particle’s size and shape. The effect of optical enhancement of nanoparticles has been studied in various experiments of surface-enhanced spectroscopy for a long time. The optical field scattering around a nanoparticle may be viewed as an instantaneous absorption and re-radiation process. When the wavelength of incident light coincides with the wavelength of plasmon resonance, the absorption/scattering cross-section of a particle expands significantly. The localized optical properties and near-field distribution of enhancements in nanoparticles are directly studied via a near-field scanning optical microscope (NSOM). Several interesting phenomena are focused. The first is the phase-response effect in a single nanoparticle. A series of NSOM experiments are demonstrated to directly observe and analyze the size-dependent optical enhancement of a single nanoparticle through an isolated excitation. The second is about plasmonic properties in arrayed/collective metal nanoparticles. The gap- and polarization-dependent optical enhancement effects of hot spots in nanoparticle pairs are directly observed and quantified. Finally, by means of a lateral excitation, the near-field properties of higher-order localized surface plasmon resonances are imaged and manifested. The near-field optical enhancement effect is applied in a real-time bio-imaging system for the observations of bio-molecular interactions in living cells.

    Chapter 1 Introduction 1 Chapter 2 Surface plasmons and particle plasmons 5 2.1 Plasmon modes on planar metal-dielectric interfaces - surface plasmons 5 2.1-1 Electro-dynamical theory 6 2.1-2 Surface plasmon excitation by light 8 2.2 Plasmon modes in metal nanoparticles - particle plasmons 9 2.2-1 Simple semi-classical model 11 2.2-2 Light scattering and absorption by metal nanoparticles 12 2.2-3 Quasi-static approximation - Rayleigh Theory 14 2.2-4 Optical enhancements of nanoparticles 17 Chapter 3 Near-field scanning optical microscope (NSOM) 20 Chapter 4 The size-dependent optical enhancement in a single nanoparticle 25 4.1 Experimental setup 27 4.1-1 Near-field scanning optical microscopy (NSOM) 27 4.1-2 Samples 28 4.2 Theoretical considerations 29 4.3 Results and discussion 31 4.4 Conclusion 34 Chapter 5 Characterization of the near-field optical properties in nanoparticle pairs 36 5.1 Experimental setup 37 5.1-1 Near-field scanning optical microscopy (NSOM) 37 5.1-2 Samples 39 5.2-1 Electromagnetic (EM) field distributions of metal nanoparticle pairs 39 5.2 Results and discussion 39 5.2-2 Polarization-dependent optical enhancements in metal nanoparticle pairs 42 5.2-3 Distance-dependent optical enhancements in metal nanoparticle pairs 45 5.3 Conclusion 46 Chapter 6 Near-field characterization of the optical properties in higher-order plasmonic resonances 50 6.1 Quadrupole plasmon resonances 51 6.2 Experimental setup 55 6.3 Results and discussion 57 Chapter 7 Build a bio-imaging system for infrared region 60 7.1 Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser 60 7.1-1 Experimental setup 64 7.1-2 Results and Discussion 65 7.2 Realization and optimization of a broadband multi-photon scanning system 69 7.2-1 System layout 71 7.2-2 Results and discussion 73 7.3 Aberration minimization in a mirror-based, broadband laser scanning system 78 7.3-1 Coma Compensation 79 7.3-2 Astigmatism compensation 80 7.3-3 System layout 81 7.3-4 Performance Simulation 82 7.3-5 Experimental confirmation 84 Chapter 8 Conclusion 91

    References for Chapter 1:
    1. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
    2. V.M. Agranovich, D.L. Mills (Eds.), “Surface Polaritons”, North-Holland, Amsterdam (1982).
    3. H. Raether, Surface Plasmons, Springer-Verlag, Berlin, (1988).
    4. A.D. Boardman (Ed.), “Electromagnetic Surface Modes”, JohnWiley & Sons, NewYork, (1982).
    5. G. Boisde, A. Harmer, “Chemical and Biochemical Sensing with Optical Fibers and Waveguides”, Arthech House, Boston, (1996).
    6. H.-E. Ponath, G.I. Stegeman (Eds.), “Nonlinear Surface Electromagnetic Phenomena”, North-Holland, Amsterdam, (1991).
    7. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424 824 (2003).
    8. A.V. Zayats, I.I. Smolyaninov, J. Opt. A: Pure Appl. Opt. 5 S16 (2003).
    9. F. Keilman, Proc. SPIE 1029 50 (1988).
    10.D.W. Pohl, D. Courjon (Eds.), “Near Field Optics”, Kluwer, The Netherlands, (1993).
    11.R.C. Reddick, R.J.Warmack, T.L. Ferrel, Phys. Rev. B 39 767 (1989).
    12.D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71 23 (1989).
    13.F. de Fornel, J.P. Goudonnet, L. Salomon, E. Lesniewska, Proc. SPIE 1139 77 (1989).
    14.O. Marti, H. Bielefeldt, B. Hecht, S. Herminhaus, P. Leiderer, J. Mlynek, Opt. Commun. 96 225 (1993).
    15.P.M. Adam, L. Salomon, F. de Fornel, J.P. Goudonnet, Phys. Rev. B 48 2680 (1993).
    16.P. Dawson, F. de Fornel, J.-P. Goudonnet, Phys. Rev. Lett. 72 2927 (1994).
    17.D.P. Tsai, J. Kovasc, Z.Wang, M. Moskovits, V.M. Shalaev, J.S. Suh, R. Botet, Phys. Rev. Lett. 72 4149 (1994).
    18.S.I. Bozhevolnyi, I.I. Smolyaninov, A.V. Zayats, Phys. Rev. B 51 17916 (1995).
    19.S.I. Bozhevolnyi, B. Vohnsen, I.I. Smolyaninov, A.V. Zayats, Opt. Commun. 117 417 (1995).
    20.B. Hecht, H. Bielefeldt, L. Novotny,Y. Inouye, D.W. Pohl, Phys. Rev. Lett. 77 1889 (1996).
    21.S.I. Bozhevolnyi, B. Vohnsen, A.V. Zayats, in: M. Nieto-Vesperinas, N. García (Eds.), “Optics at the Nanometer Scale”, Kluwer Academic Publ., Dordrecht, p. 163 (1996),.
    22.N.E. Glass, M.Weber, D.L. Mills, Phys. Rev. B 29 6548 (1984).
    23.B. Laks, D.L. Mills, A.A. Maradudin, Phys. Rev. B 29 4965 (1981).
    24.W.L. Barnes, T.W. Preist, S.C. Kitson, J.R. Sambles, Phys. Rev. B 54 6227 (1996).
    25.S.I. Bozhevolnyi, J. Erland, K. Leosson, P.M.W. Skovgaard, J.M. Hvam, Phys. Rev. Lett. 86 3008 (2001).
    26.M. Kretschmann, A.A. Maradudin, Phys. Rev. B 66 245408 (2002).

    References for Chapter 2:
    1. Canziani, G., Zhang, W., Cines, D., Rux, A., Willis, S., Cohen, G., Eisenberg, R., and Chaiken, “Exploring biomolecular recognition using optical biosensors”, (1999).
    2. Mullett, W. M., Lai, E. P. C., and Yeung, J. M. ,”Surface plasmon resonance-based immunoassays.”, Methods, 22, 77-91. (2000).
    3. Rich, R. L. and Myszka, D. G., Journal of molecular recognition. 13, 388. (2000).
    4. Keilmann, F., Int. J. of Infrared and Millimeter Waves. 2, 259 (1981).
    5. Raether, H., “Surface Plasmons”, Springer Berlin (1988).
    6. A. Otto, “Excitation of surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, 216, 398, (1968).
    7. Kretschmann, E., “The Determination of the Optical Constants of Metals by Excitation of Surface Plasmons”, Z. Phys., 241, 313(1971).
    8. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824, (2003).
    9. Kreibig and Vollmer “Optical Properties of Metal Clusters” (1995).
    10.Mulvaney, P., Langmuir 12, 788 (1996).
    11. El-Sayed, N.M.A., Hegde, P., Quackenbush, J., Melville, S.E., and Donelson, J.E. The African trypanosome genome. International J. Parasitol 30:329-345 (2000).
    12.Langford Grove” Quantum mechanics: an introduction” (1842).
    13.Bohren, C. and Huffman, D. “Absorption and Scattering of Light by Small Particles.”, John Wiley & Sons, New York. (1982).
    14.S. Nie, and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science 275, 1102-1106 (1997).
    15. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 -6759 (2002).
    16.R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, J. Chem. Phys. 99, 2101-2115 (1993).
    17.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Chem. Rev. 99, 2957-2976 (1999).
    18.M. Moskovits, Rev. Mod. Phys. 57, 783-826 (1985).
    19.V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson and V. M. Shalaev, J. Raman Spectrosc. 36, 648-656 (2005).
    20.Z. B. Wang et al., Phys. Rev. B 70, 035418 (2004).
    21.C. Bohren and D. Huffiman, “Absorption and Scattering of Light by Small Particles” ,John Wiley & Sons, New York, (1982).
    22.S. R. Emory, W. E. Haskins, and S. Nie, J. Am. Chem. Soc. 120, 8009-8010 (1998).
    23. J. Prikulis et al., J. Appl. Phys. 92, 6211-6214 (2002).
    24.A. A. Mikhailovsky, M. A. Petruska, M. I. Stockman, and V. I. Klimov, Opt. Lett. 28, 1686-1688 (2003).
    25. B.-H. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, Nanotechnology 18, 075706 (2007).
    26.M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).

    References for Chapter 3:
    1. D.W. Pohl, D. Courjon (Eds.), “Near Field Optics”, Kluwer, The Netherlands, (1993).
    2. R.C. Reddick, R.J.Warmack, T.L. Ferrel, Phys. Rev. B 39, 767 (1989).
    3. D. Courjon, K. Sarayeddine, M. Spajer, Opt. Commun. 71, 23 (1989).
    4. F. de Fornel, J.P. Goudonnet, L. Salomon, E. Lesniewska, Proc. SPIE 1139, 77(1989).
    5. O. Marti, H. Bielefeldt, B. Hecht, S. Herminhaus, P. Leiderer, J. Mlynek, Opt. Commun. 96, 225 (1993).
    6. P.M. Adam, L. Salomon, F. de Fornel, J.P. Goudonnet, Phys. Rev. B 48 2680 (1993).
    7. P. Dawson, F. de Fornel, J.-P. Goudonnet, Phys. Rev. Lett. 72 2927 (1994).
    8. D.P. Tsai, J. Kovasc, Z.Wang, M. Moskovits, V.M. Shalaev, J.S. Suh, R. Botet, Phys. Rev. Lett. 72 4149 (1994).

    References for Chapter 4:
    1. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027 (1987).
    2. Shuming Nie, and Steven R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
    3. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 -6759 (2002).
    4. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99, 2101-2115 (1993).

    References for Chapter5:
    1. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027 (1987).
    2. Z. B. Wang et al., “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
    3. C. Bohren and D. Huffiman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1982).
    4. C. H. Huang, H. Y. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16, 9580 (2008).
    5. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
    6. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899-903 (2004).
    7. J. P. Kottmann and O. J. F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Opt. Lett. 26, 1096-1098 (2001).
    8. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324 (2000).
    9. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, “Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass,” J. Chem. Phys. 99, 2101-2115 (1993).
    10. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99, 2957-2976 (1999).
    11. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783-826 (1985).
    12. V. P. Drachev, M. D. Thoreson, V. Nashine, E. N. Khaliullin, D. Ben-Amotz, V. J. Davisson and V. M. Shalaev, “Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules,” J. Raman Spectrosc. 36, 648-656 (2005).
    13. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    14. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    15. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410-8426 (1999).
    16. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176 (2002).
    17. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6, 638–688 (2004).
    18. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104, 11965-11971 (2000).
    19. K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, “Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS),” Phys. Rev. E 57, 6281-6284 (1998).
    20. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357-4360 (1999).
    21. H. Wang, C. S. Levin, and N. J. Halas, “Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates,” J. Am. Chem. Soc. 127, 14992-14993 (2005).
    22. Z. Zhu, T. Zhu and Z. Liu, “Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling,” Nanotechnology 15, 357-364 (2004).
    23. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem. 76, 5730-5738 (2004).
    24. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of
    femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88, 067402 (2002).
    25. J. F. Wolf, P. E. Hillner, R. Bilewicz, P. Kölsch, and J. P. Rabe, “Novel scanning near-field optical microscope (SNOM)/ scanning confocal optical microscope based on normal force distance regulation and bent etched fiber tips,” Rev. Sci. Instrum. 70, 2751 (1999).

    References for Chapter 6:
    1. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027 (1987).
    2. Z. B. Wang et al., “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004).
    3. K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, 170 (2003).
    4. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B 36, 5027 (1987).
    5. Lynch, D. W.; Hunter, W. R. In Handbook of Optical Constants of Solids; Palik, E. D., Ed.; New York:cademic, p 350- 356 (1985).
    6. R. Esteban, R. Vogelgesang, J. Dorfmu¨ ller,A. Dmitriev,C. Rockstuhl,C. Etrich,and K. Kern, “Direct Near-Field Optical Imaging of Higher Order Plasmonic Resonances,” Nano letter 8, 3155 (2008).

    References for Chapter 7:
    1. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, "Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase," Rev. Sci. Instrum. 79, 013107 (2008).
    2. P. J. Harding, T. G. Euser, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, "Dynamical ultrafast alloptical switching of planar GaAs/AIAs photonic microcavities," Appl. Phys. Lett. 91, 111103 (2007).
    3. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D: Appl. Phys. 37, 3296-3303 (2004).
    4. N. Deguil, E. Mottay, F. Salin, P. Legros, and D. Choquet, "Novel diode-pumped infrared tunable laser system for multi-photon microscopy," Microsc. Res. Tech. 63, 23-26 (2004).
    5. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, "Multiphoton excitation spectra in biological samples," J. Biomed. Opt. 8, 329-338 (2003).
    6. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. S. Russell, F. G.
    Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion- engineered photonic crystal fibres," Nature 424, 511-515 (2003).
    7. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    8. T. A. Birks, W. J. Wadsworth, and P. S. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    9. W. S. Pelouch, P. E. Powers, and C. L. Tang, "Ti-sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator," Opt. Lett. 17, 1070-1072 (1992).
    10.G. Cerullo, and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    11.U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003).
    12.F. Tavella, A. Marcinkevicius, and F. Krausz, "90 mJ parametric chirped pulse amplification of 10 fs pulses," Opt. Express 14, 12822-12827 (2006).
    13.S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, "1.5 mJ, 6.4 fs parametric chirped-pulse amplification system at 1 kHz," Opt. Lett. 32, 2487-2489 (2007).
    14.V. Petrov, F. Noack, P. Tzankov, M. Ghotbi, M. Ebrahim-Zadeh, I. Nikolov, and I. Bucharov, "High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB3O6 pumped at 800 nm," Opt. Express 15, 556-563 (2007).
    15.Q. Fu, G. Mak, and H. M. Vandriel, "High-power, 62-fs infrared optical parametric oscillator synchronouslypumped by a 76 MHz Ti-sapphire laser," Opt. Lett. 17, 1006-1008 (1992).
    16. J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, "Characteristics of a noncritically phasematched Ti-sapphire pumped femtosecond optical parametric oscillator," Opt. Commun. 104, 419-430 (1994).
    17.S. W. Chu, T. M. Liu, and C. K. Sun, "Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti : sapphire laser," Opt. Express 11, 933-938 (2003).
    18.W. F. Krupke, "Ytterbium solid-state lasers - The first decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000).
    19.F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "131 W 220 fs fiber laser system," Opt. Lett. 30, 2754-2756 (2005).
    20. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
    21.T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tunnermann, "High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier," Opt. Express 14, 4765-4773 (2006).
    22.A. Killi, A. Steinmann, G. Palmer, U. Morgner, H. Bartelt, and J. Kobelke, "Megahertz optical parametric amplifier pumped by a femtosecond oscillator," Opt. Lett. 31, 125-127 (2006).
    23.C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, "Millijoule-level phase-stabilized few-optical-cycle infrared parametric source," Opt. Lett. 32, 2957- 2959 (2007).
    24. J. M. Stone, and J. C. Knight, "Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2007).
    25.O. Gayer, Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl. Phys. B-Lasers Opt. 91, 343-348 (2008).
    26.S. T. Yang, R. C. Eckardt, and R. L. Byer, "Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition," J. Opt. Soc. Am. B 10, 1684-1695 (1993).
    27.T. Wang, H. Zhu, L. Qian, G. Xu, and D. Fan, " Tunable femtosecond optical parametric amplifier with weak CW seeding," Opt. Commun. 239, 397 - 401 (2004).
    28.S. T. Lin, Y. Y. Lin, Y. C. Huang, and A. C. Chiang, "Observation of thermal-induced optical guiding and bistability in a mid-IR continuous-wave, singly resonant optical parametric oscillator," Opt. Lett. 33, 2338-2340 (2008)
    29.C. Xu and Watt W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13, 481-491 (1996).
    30.K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83-104 (2000).
    31.W. R. Zipfel, R. M. Williams and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369-1377 (2003).
    32.P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356-1360 (2003).
    33.C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” PNAS 93, 10763-10768 (1996).
    34. S.-W. Chu, I-H. Chen, T.-M. Liu, P. C. Chen, C.-K. Sun, and B.-L. Lin, “Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser,” Opt. Lett. 26, 1909-1911 (2001).
    35.G McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4 μm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52, 717-724 (2007).
    36.H. Yokoyama, H. Tsubokawa, H. Guo, J.-I. Shikata, K.-I. Sato, K. Takashima, K. Kashiwagi, N. Saito, H. Taniguchi, and H. Ito, “Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source,” J. Biomed. Opt. 12, 054019 (2007).
    37.F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292-1294 (2006).
    38.D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, “STED microscopy with a supercontinuum laser source,” Opt. Express 16, 9614-9621 (2008).
    39.M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet,” Opt. Lett. 33, 345-347 (2008).
    40.T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and backward Terahertz-wave difference-frequency generations from periodically poled lithium niobate,” Opt. Express 16, 6471-6478 (2008).
    41.R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal Scanning Laser Ophthalmoscope,” Appl. Optics 26, 1492-1499 (1987).
    42.A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405-412 (2002).
    43.D. C. Hanna, “Astigmatic gaussian beams produced by axially asymmetric laser cavities,” IEEE Journal of Quantum Electronics 5, 483-488 (1969).
    44.W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990)
    45.A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    46.R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal Scanning Laser Ophthalmoscope," Appl. Optics 26, 1492-1499 (1987).
    47.D. L. Bourell, H. L. Marcus, J. W. Barlow, and J. J. Beaman, "Selective Laser Sintering of Metals and Ceramics," International Journal of Powder Metallurgy 28, 369-381 (1992).
    48.S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption," Nature 412, 697-698 (2001).
    49.D. Wildanger, E. Rittweger, L. Kastrup, and S. W. Hell, "STED microscopy with a supercontinuum laser source," Opt. Express 16, 9614-9621 (2008).
    50.H. Yokoyama, H. Tsubokawa, H. C. Guo, J. Shikata, K. Sato, K. Takashima, K. Kashiwagi, N. Saito, H. Taniguchi, and H. Ito, "Two-photon bioimaging utilizing supercontinuum light generated by a high-peak-power picosecond semiconductor laser source," J. Biomed. Opt. 12, Artn. 054019 (2007).
    51.G. McConnell, "Nonlinear optical microscopy at wavelengths exceeding 1.4 mu m using a synchronously pumped femtosecond-pulsed optical parametric oscillator," Phys. Med. Biol. 52, 717-724 (2007).
    52.F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
    53.M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, "Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet," Opt. Lett. 33, 345-347 (2008).
    54.T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, "Forward and backward Terahertz-wave difference-frequency generations from periodically poled lithium niobate," Opt. Express 16, 6471-6478 (2008).
    55.K. Grieve, P. Tiruveedhula, Y. H. Zhang, and A. Roorda, "Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope," Opt. Express 14, 12230-12242 (2006).
    56.F. Reinholz, R. A. Ashman, and R. H. Eikelboom, "Simultaneous three wavelength imaging with a scanning laser ophthalmoscope," Cytometry 37, 165-170 (1999).
    57.D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
    58.H. Gross, H. Zugge, M. Peschka, and F. Blechinger, Handbook of optical systems v.3: Aberration theory and correction of optical systems (Wiley-VCH , 2005).

    無法下載圖示 校內:2029-11-09公開
    校外:2029-11-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE