簡易檢索 / 詳目顯示

研究生: 何舒莛
He, Shu-Ting
論文名稱: 白點症病毒於基因體複製時期活化麩醯胺酸代謝作用之氧化與還原路徑
Oxidative and reductive glutamine metabolism is triggered at WSSV genome replication stage
指導教授: 王涵青
Wang, Han-Ching
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 白點症病毒IDHs氧化式麩醯胺酸分解作用還原式麩醯胺酸分解作用
外文關鍵詞: White spot syndrome virus, IDHs, oxidative glutaminolysis, reductive glutamine metabolism
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白點症病毒(white spot syndrome virus;WSSV)造成全球重大經濟損失,因此確定其發病機制將有相當的重要性。先前研究提出病毒基因體複製時期,誘發瓦氏效應及麩醯胺酸分解作用。麩醯胺酸分解作用有兩條路徑:α-KGDH介導的氧化路徑,以及IDH1或IDH2介導的還原途徑。本研究中指出白點症病毒基因體複製階段會增加α-KGDH及IDH1基因表現量,並提高還原性IDHs及氧化性α-KGDH酵素活性。以dsRNA分別使IDH1、IDH2及α-KGDH基因默化,得知三基因對白點症病毒的複製皆相當重要。利用[U-13C]麩醯胺酸以及[5-13C]麩醯胺酸作為穩定同位素標定(stable isotopic labeling)追蹤物,證實在病毒基因體複製階段,麩醯胺酸代謝的還原流顯著增加。再者,一系列的抑制試驗得知白點症病毒感染過程可能透過Ras參與活化麩醯胺酸分解作用。總而言之,病毒基因體複製階段相關酵素表現量被活化以增強麩醯胺酸代謝流,回補檸檬酸循環,而還原性麩醯胺酸分解路徑可能是主要產生脂質以支持白點症病毒在後期病毒顆粒的型態形成。

    Although White spot syndrome virus (WSSV) has caused huge global economic losses, its pathogenesis remains poorly understood. We reported that WSSV triggered a Warburg effect, as well as glutaminolysis, at the WSSV genome replication stage. Glutamine metabolism occurs in two pathways: an α-KGDH-mediated oxidative pathway and an alternative reductive pathway, mediated by IDH1 or 2. Herein, we determined that gene expressions of α-KGDH and IDH1 were increased in WSSV-infected shrimp, with increased enzyme activity of α-KGDH and IDHs in the reductive pathway. Silencing α-KGDH, IDH1 and IDH2 with their respective dsRNAs implicated these three enzymes in WSSV replication. Moreover, at the replication stage, significant increases in amounts and production rates of metabolites in oxidative and reductive glutamine metabolic pathways were confirmed using [U-13C]glutamine and [5-13C]glutamine as tracers. In conclusion, at the viral genome replication stage, glutamine metabolic fluxes were increased, with elevated expression of related enzymes to replenish the TCA cycle and support WSSV morphogenesis.

    中文摘要..................................................I 英文摘要.................................................II 誌謝......................................................V 目錄.....................................................VI 表目錄...................................................IX 圖目錄....................................................X 附錄目錄...............................................XIII 縮寫表..................................................XIV 一、 研究背景..........................................1 1-1 蝦類養殖產業近況...................................1 1-2 白點症病毒之特性...................................2 1-3 白點症病毒引起之瓦氏效應............................2 1-4 瓦氏效應伴隨之麩醯胺酸分解作用......................4 1-5 白點症病毒活化宿主細胞之訊息傳導路徑.................6 1-6 白點症病毒影響宿主脂質生合成途徑.....................9 1-7 研究目的..........................................10 二、 材料與方法........................................12 2-1 實驗動物..........................................12 2-2 病毒來源及感染試驗.................................12 2-3 雙股RNA製備.......................................13 2-4 基因默化..........................................14 2-5 Total RNA萃取....................................14 2-6 反轉錄聚合酶連鎖反應...............................15 2-7 即時定量聚合酶連鎖反應.............................15 2-8 酵素活性試驗......................................16 2-9 穩定同位素標定碳追蹤物之白蝦活體試驗................17 2-10 LC/ESI-MS分析穩定同位素標定碳追蹤物................18 2-11 穩定同位素標定碳追蹤物數據統計分析..................20 2-12 利用Salirasib、Torin1以及LY294002抑制劑抑制Ras及 PI3K-Akt-mTOR訊息傳遞路徑相關基因..........................21 三、 結果.............................................22 3-1 白點症病毒對於麩醯胺酸分解作用活化情形..............22 3-2 麩醯胺酸分解作用中相關酵素對於白點症病毒複製重要性...23 3-3 白點症病毒感染後宿主麩醯胺酸分解作用代謝流模型.......24 3-4 白點症病毒引起麩醯胺酸分解作用之訊息傳遞路徑.........28 四、 討論.............................................30 參考文獻..................................................41 圖表.....................................................52 附錄.....................................................78

    童丞逸,探討感染白點症病毒感染後蝦血細胞的糖解作用及穀醯胺酸分解作用代謝流模型,國立成功大學生物科技研究所碩士論文,2017。

    鄭丞舜,探討脂質代謝對於白點症病毒複製的重要性,國立成功大學生物科技研究所碩士論文,2016。

    蘇美安,雷帕黴素標靶蛋白訊息傳遞路徑在白點症病毒之致病機轉中所扮演之角色,國立成功大學生物科技研究所碩士論文,2013。

    Ahearn, I. M., Haigis, K., Bar-Sagi, D., and Philips, M. R. Regulating the regulator: post-translational modification of RAS. Nature Reviews Molecular Cell Biology 13, 39-51, 2011.

    Altman, B. J., Stine, Z. E., and Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nature Reviews Cancer 16, 619-634, 2016.

    Asati, V., Mahapatra, D. K., and Bharti, S. K. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry 109, 314-341, 2016.

    Babic, I., Anderson, E. S., Tanaka, K., Guo, D., Masui, K., Li, B., Zhu, S., Gu, Y., Villa, G. R., Akhavan, D., Nathanson, D., Gini, B., Mareninov, S., Li, R., Camacho, C. E., Kurdistani, S. K., Eskin, A., Nelson, S. F., Yong, W. H., Cavenee, W. K., Cloughesy, T. F., Christofk, H. R., Black, D. L., and Mischel, P. S. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metabolism 17, 1000-1008, 2013.

    Bach, S. J., and Smith, M. Glutamine; a nitrogen source in urea synthesis. The Biochemical Journal 64, 417-425, 1956.

    Baenke, F., Peck, B., Miess, H., and Schulze, A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Disease Models and Mechanisms 6, 1353-1363, 2013.

    Bergmann, M., Romirer, I., Sachet, M., Fleischhacker, R., Garcia-Sastre, A., Palese, P., Wolff, K., Pehamberger, H., Jakesz, R., and Muster, T. A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Research 61, 8188-8193, 2001.

    Bracho-Valdes, I., Moreno-Alvarez, P., Valencia-Martinez, I., Robles-Molina, E., Chavez-Vargas, L., and Vazquez-Prado, J. mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. International Union of Biochemistry and Molecular Biology Life 63, 896-914, 2011.

    Carinhas, N., Pais, D. A., Koshkin, A., Fernandes, P., Coroadinha, A. S., Carrondo, M. J., Alves, P. M., and Teixeira, A. P. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production. Scientific Reports 6, 23529, 2016.

    Chen, I. T., Aoki, T., Huang, Y. T., Hirono, I., Chen, T. C., Huang, J. Y., Chang, G. D., Lo, C. F., and Wang, H. C. White Spot Syndrome Virus Induces Metabolic Changes Resembling the Warburg Effect in Shrimp Hemocytes in the Early Stage of Infection. Journal of Virology 85, 12919-12928, 2011.

    Chu, B., Wu, T., Miao, L., Mei, Y. D., and Wu, M. A. MiR-181a regulates lipid metabolism via IDH1. Scientific Reports 5, 8801, 2015.

    Csibi, A., Fendt, S. M., Li, C., Poulogiannis, G., Choo, A. Y., Chapski, D. J., Jeong, S. M., Dempsey, J. M., Parkhitko, A., Morrison, T., Henske, E. P., Haigis, M. C., Cantley, L. C., Stephanopoulos, G., Yu, J., and Blenis, J. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153, 840-854, 2013.

    Csibi, A., Lee, G., Yoon, S. O., Tong, H., Ilter, D., Elia, I., Fendt, S. M., Roberts, T. M., and Blenis, J. The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Current Biology 24, 2274-2280, 2014.

    Dang, C. V. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Research 70, 859-862, 2010.

    De Schryver, P., Defoirdt, T., and Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? PLoS Pathogens 10, e1003919, 2014.

    DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G., and Thompson, C. B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism 7, 11-20, 2008.

    Delgado, T., Carroll, P. A., Punjabi, A. S., Margineantu, D., Hockenbery, D. M., and Lagunoff, M. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 107, 10696-10701, 2010.

    Delgado, T., Sanchez, E. L., Camarda, R., and Lagunoff, M. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathogens 8, e1002866, 2012.

    Diamond, D. L., Syder, A. J., Jacobs, J. M., Sorensen, C. M., Walters, K. A., Proll, S. C., McDermott, J. E., Gritsenko, M. A., Zhang, Q. B., Zhao, R., Metz, T. O., Camp, D. G., Waters, K. M., Smith, R. D., Rice, C. M., and Katze, M. G. Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics. PLoS Pathogens 6, e1000719, 2010.

    Du, J., Yanagida, A., Knight, K., Engel, A. L., Vo, A. H., Jankowski, C., Sadilek, M., Tran, V. T., Manson, M. A., Ramakrishnan, A., Hurley, J. B., and Chao, J. R. Reductive carboxylation is a major metabolic pathway in the retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America 113, 14710-14715, 2016.

    Fendt, S. M., Bell, E. L., Keibler, M. A., Olenchock, B. A., Mayers, J. R., Wasylenko, T. M., Vokes, N. I., Guarente, L., Vander Heiden, M. G., and Stephanopoulos, G. Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nature Communications 4, 2236, 2013.

    Filipp, F. V., Scott, D. A., Ronai, Z. A., Osterman, A. L., and Smith, J. W. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell and Melanoma Research 25, 375-383, 2012.

    Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G., and Chiaradonna, F. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Molecular Systems Biology 7, 523, 2011.

    Gameiro, P. A., Yang, J., Metelo, A. M., Perez-Carro, R., Baker, R., Wang, Z., Arreola, A., Rathmell, W. K., Olumi, A., Lopez-Larrubia, P., Stephanopoulos, G., and Iliopoulos, O. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metabolism 17, 372-385, 2013.

    Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T., and Dang, C. V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765, 2009.

    Guo, Y., Meng, X. K., Ma, J. M., Zheng, Y. H., Wang, Q., Wang, Y. N., and Shang, H. Human Papillomavirus 16 E6 Contributes HIF-1 alpha Induced Warburg Effect by Attenuating the VHL-HIF-1 alpha Interaction. International Journal of Molecular Sciences 15, 7974-7986, 2014.

    Heiden, M. G. V., Cantley, L. C., and Thompson, C. B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 324, 1029-1033, 2009.

    Hsieh, Y. C., Chen, Y. M., Li, C. Y., Chang, Y. H., Liang, S. Y., Lin, S. Y., Lin, C. Y., Chang, S. H., Wang, Y. J., Khoo, K. H., Aoki, T., and Wang, H. C. To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1 alpha pathway. Developmental and Comparative Immunology 53, 85-95, 2015.

    Hu, Y., Lu, W., Chen, G., Wang, P., Chen, Z., Zhou, Y., Ogasawara, M., Trachootham, D., Feng, L., Pelicano, H., Chiao, P. J., Keating, M. J., Garcia-Manero, G., and Huang, P. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Research 22, 399-412, 2012.

    Jung, G. S., Jeon, J. H., Choi, Y. K., Jang, S. Y., Park, S. Y., Kim, S. W., Byun, J. K., Kim, M. K., Lee, S., Shin, E. C., Lee, I. K., Kang, Y. N., and Park, K. G. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication. Scientific Reports 6, 30846, 2016.

    Khanna, A., Lotfi, P., Chavan, A. J., Montano, N. M., Bolourani, P., Weeks, G., Shen, Z., Briggs, S. P., Pots, H., Van Haastert, P. J., Kortholt, A., and Charest, P. G. The small GTPases Ras and Rap1 bind to and control TORC2 activity. Scientific Reports 6, 25823, 2016.

    Koh, H. J., Lee, S. M., Son, B. G., Lee, S. H., Ryoo, Z. Y., Chang, K. T., Park, J. W., Park, D. C., Song, B. J., Veech, R. L., Song, H. B., and Huh, T. L. Cytosolic NADP(+)-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. Journal of Biological Chemistry 279, 39968-39974, 2004.

    Leu, J. H., Tsai, J. M., Wang, H. C., Wang, A. H., Wang, C. H., Kou, G. H., and Lo, C. F. The unique stacked rings in the nucleocapsid of the white spot syndrome virus virion are formed by the major structural protein VP664, the largest viral structural protein ever found. Journal of Virology 79, 140-149, 2005.

    Levy, P. L., Duponchel, S., Eischeid, H., Molle, J., Michelet, M., Diserens, G., Vermathen, M., Vermathen, P., Dufour, J. F., Dienes, H. P., Steffen, H. M., Odenthal, M., Zoulim, F., and Bartosch, B. Hepatitis C virus infection triggers a tumor-like glutamine metabolism. Hepatology 65, 789-803, 2017.

    Li, C. Y., Wang, Y. J., Huang, S. W., Cheng, C. S., and Wang, H. C. Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis. PLoS One 11, e0146902, 2016a.

    Li, L., Zhao, G. D., Shi, Z., Qi, L. L., Zhou, L. Y., and Fu, Z. X. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncology Letters 12, 3045-3050, 2016b.

    Lien, G. S., Lin, C. H., Yang, Y. L., Wu, M. S., and Chen, B. C. Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. European Journal of Pharmacology 776, 124-131, 2016.

    Mabuchi, S., Kuroda, H., Takahashi, R., and Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecologic Oncology 137, 173-179, 2015.

    Makinoshima, H., Takita, M., Saruwatari, K., Umemura, S., Obata, Y., Ishii, G., Matsumoto, S., Sugiyama, E., Ochiai, A., Abe, R., Goto, K., Esumi, H., and Tsuchihara, K. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma. Journal of Biological Chemistry 290, 17495-17504, 2015.

    Mannova, P., and Beretta, L. Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. Journal of Virology 79, 8742-8749, 2005.

    Mashima, T., Seimiya, H., and Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer 100, 1369-1372, 2009.

    Masui, K., Cavenee, W. K., and Mischel, P. S. mTORC2 in the center of cancer metabolic reprogramming. Trends in Endocrinology and Metabolism 25, 364-
    373, 2014.

    Masui, K., Tanaka, K., Akhavan, D., Babic, I., Gini, B., Matsutani, T., Iwanami, A., Liu, F., Villa, G. R., Gu, Y., Campos, C., Zhu, S., Yang, H., Yong, W. H., Cloughesy, T. F., Mellinghoff, I. K., Cavenee, W. K., Shaw, R. J., and Mischel, P. S. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metabolism 18, 726-739, 2013.

    Mendoza, M. C., Er, E. E., and Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends in Biochemical Sciences 36, 320-328, 2011.

    Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J. J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., and Stephanopoulos, G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384, 2012.

    Michalak, K. P., Mackowska-Kedziora, A., Sobolewski, B., and Wozniak, P. Key roles of glutamine pathways in reprogramming the cancer metabolism. Oxidative Medicine and Cellular Longevity 2015, 964321, 2015.

    Mullen, A. R., Hu, Z., Shi, X., Jiang, L., Boroughs, L. K., Kovacs, Z., Boriack, R., Rakheja, D., Sullivan, L. B., Linehan, W. M., Chandel, N. S., and DeBerardinis, R. J. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Reports 7, 1679-1690, 2014.

    Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., Yang, Y. F., Linehan, W. M., Chandel, N. S., and DeBerardinis, R. J. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385-388, 2012.

    Munger, J., Bennett, B. D., Parikh, A., Feng, X. J., McArdle, J., Rabitz, H. A., Shenk, T., and Rabinowitz, J. D. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nature Biotechnology 26, 1179-1186, 2008.

    Owen, O. E., Kalhan, S. C., and Hanson, R. W. The key role of anaplerosis and cataplerosis for citric acid cycle function. Journal of Biological Chemistry 277, 30409-30412, 2002.

    Pan, W., Bodempudi, V., Esfandyari, T., and Farassati, F. Utilizing ras signaling pathway to direct selective replication of herpes simplex virus-1. PLoS One 4, e6514, 2009.

    Pellerin, L., and Magistretti, P. J. Glutamate Uptake into Astrocytes Stimulates Aerobic Glycolysis - a Mechanism Coupling Neuronal-Activity to Glucose-Utilization. Proceedings of the National Academy of Sciences of the United States of America 91, 10625-10629, 1994.

    Richards, D. P., Sojo, L. E., and Keller, B. O. Quantitative analysis with modern bioanalytical mass spectrometry and stable isotope labeling. Journal of Labelled Compounds and Radiopharmaceuticals: The Official Journal of the International Isotope Society 50, 1124-1136, 2007.

    Robey, R. B., and Hay, N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Seminars in Cancer Biology 19, 25-31, 2009.

    Sanchez-Paz, A. White spot syndrome virus: an overview on an emergent concern. Veterinary Research 41, 43, 2010.

    Sanchez, E. L., Carroll, P. A., Thalhofer, A. B., and Lagunoff, M. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathogens 11, e1005052, 2015.

    Sanchez, E. L., and Lagunoff, M. Viral activation of cellular metabolism. Virology 479-480, 609-618, 2015.

    Sappington, D. R., Siegel, E. R., Hiatt, G., Desai, A., Penney, R. B., Jamshidi-Parsian, A., Griffin, R. J., and Boysen, G. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines. Biochimica et Biophysica Acta 1860, 836-843, 2016.

    Sengupta, S., Peterson, T. R., and Sabatini, D. M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Molecular Cell 40, 310-322, 2010.

    Smith, R. J. Glutamine metabolism and its physiologic importance. JPEN Journal of Parenteral and Enteral Nutrition 14, 40S-44S, 1990.

    Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C., and Kimmelman, A. C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105, 2013.

    Su, M. A., Huang, Y. T., Chen, I. T., Lee, D. Y., Hsieh, Y. C., Li, C. Y., Ng, T. H., Liang, S. Y., Lin, S. Y., Huang, S. W., Chiang, Y. A., Yu, H. T., Khoo, K. H., Chang, G. D., Lo, C. F., and Wang, H. C. An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway. PLoS Pathogens 10, e1004196, 2014.

    Thai, M., Thaker, S. K., Feng, J., Du, Y., Hu, H., Ting Wu, T., Graeber, T. G., Braas, D., and Christofk, H. R. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nature Communications 6, 8873, 2015.

    van Hulten, M. C. W., Witteveldt, J., Peters, S., Kloosterboer, N., Tarchini, R., Fiers, M., Sandbrink, H., Lankhorst, R. K., and Vlak, J. M. The white spot syndrome virus DNA genome sequence. Virology 286, 7-22, 2001.

    Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033, 2009.

    Warburg, O. On the origin of cancer cells. Science 123, 309-314, 1956.

    Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B., and Thompson, C. B. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proceedings of the National Academy of Sciences of the United States of America 105, 18782-18787, 2008.

    Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva, U. M., Platt, J. M., DeMatteo, R. G., Simon, M. C., and Thompson, C. B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proceedings of the National Academy of Sciences of the United States of America 108, 19611-19616, 2011.

    Yang, L., Moss, T., Mangala, L. S., Marini, J., Zhao, H., Wahlig, S., Armaiz-Pena, G., Jiang, D., Achreja, A., Win, J., Roopaimoole, R., Rodriguez-Aguayo, C., Mercado-Uribe, I., Lopez-Berestein, G., Liu, J., Tsukamoto, T., Sood, A. K., Ram, P. T., and Nagrath, D. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Molecular Systems Biology 10, 728, 2014.

    Yi, G. H., Wang, Z. M., Qi, Y. P., Yao, L. G., Qian, J., and Hu, L. B. Vp28 of shrimp white spot syndrome virus is involved in the attachment and penetration into shrimp cells. Journal of Biochemistry and Molecular Biology 37, 726-734, 2004.

    Young, J. D. INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30, 1333-1335, 2014.

    Yu, C. F., Liu, Z. X., and Cantley, L. G. ERK negatively regulates the epidermal growth factor-mediated interaction of Gab1 and the phosphatidylinositol 3-kinase. Journal of Biological Chemistry 277, 19382-19388, 2002.

    Yu, Y., Clippinger, A. J., Pierciey, F. J., Jr., and Alwine, J. C. Viruses and metabolism: alterations of glucose and glutamine metabolism mediated by human cytomegalovirus. Advances in Virus Research 80, 49-67, 2011a.

    Yu, Y. J., Clippinger, A. J., and Alwine, J. C. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends in Microbiology 19, 360-367, 2011b.

    Yun, J., Rago, C., Cheong, I., Pagliarini, R., Angenendt, P., Rajagopalan, H., Schmidt, K., Willson, J. K., Markowitz, S., Zhou, S., Diaz, L. A., Jr., Velculescu, V. E., Lengauer, C., Kinzler, K. W., Vogelstein, B., and Papadopoulos, N. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555-1559, 2009.

    Zaidi, N., Lupien, L., Kuemmerle, N. B., Kinlaw, W. B., Swinnen, J. V., and Smans, K. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to acquire fatty acids. Progress in Lipid Research 52, 585-589, 2013.

    Zhan, W. B., Wang, Y. H., Fryer, J. L., Yu, K. K., Fukuda, H., and Meng, Q. X. White spot syndrome virus infection of cultured shrimp in China. Journal of Aquatic Animal Health 10, 405-410, 1998.

    Zhang, R., Su, J., Xue, S. L., Yang, H., Ju, L. L., Ji, Y., Wu, K. H., Zhang, Y. W., Zhang, Y. X., Hu, J. F., and Yu, M. M. HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer. American Journal of Cancer Research 6, 312-320, 2016.

    Zhou, Q., Li, H., Qi, Y. P., and Yang, F. Lipid of white-spot syndrome virus originating from host-cell nuclei. The Journal of General Virology 89, 2909-2914, 2008.

    無法下載圖示 校內:2023-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE