簡易檢索 / 詳目顯示

研究生: 陳仕峰
CHEN, Shih-feng
論文名稱: 列車轉乘最佳化之班表安排策略分析-以高雄捷運為例
Strategy Analysis of Timetable Arrangement for Optimization of Train Transfer-The Case Study of Kaohsiung MRT
指導教授: 鄭永祥
CHENG, Yung-hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 105
中文關鍵詞: 轉乘等候時間最佳化時刻表高雄捷運
外文關鍵詞: transfer, waiting time, optimization, timetable, Kaohsiung MRT
相關次數: 點閱:64下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當今世界各大都市都建有便利的地鐵、捷運系統,民眾可在路網中各路線間相互轉乘抵達其目的地。然而旅客並不喜歡多花時間在等車及轉車上,尤其當轉乘旅客剛到站,銜接班次卻恰好離站而無法順利轉乘,導致旅客服務滿意水準下降。因此設法安排轉乘銜接列車,使旅客能順利轉乘,減少候車時間,提升旅客滿意度,對營運者是一項重要的課題。本研究將以高雄捷運紅、橘兩線實際運轉資料為分析依據,設計一列車時刻表排班模式,使轉乘等候時間最小化。另過去轉乘議題相關文獻多僅考慮到列車於轉乘站本身的停等策略,本研究進一步考量整體路網沿線各路段的運轉安排,來達到轉乘最佳化的目標。
    然而對營運者而言,為改善轉乘銜接而加密列車班距或做其他調整,會增加相關成本支出。故本研究運用列車進出端點站時需通過轉轍器的特性限制,用以計算模式解出班表的所需列車成本,以求出旅客時間與業者成本間的權衡關係。最後將本模式套用不同旅運需求、路網型態與轉乘站體設計,分析各種情境下適當之轉乘安排策略,以期能建立一廣泛通用的轉乘最佳化排班模式,提供相關軌道運輸業者未來改善其服務品質、推動無縫轉乘接駁策略之建議與參考。
    模式求解結果顯示,藉由端點站出發至轉乘站沿線路段,各班列車分別調整放慢行駛速率或是延長靠站時間,即可得最少等候時間的轉乘最佳化班表,相較高捷現行班表均有相當程度的改善,尖峰時段總等候時間可減少約35%,離峰時節省幅度更可達近六成。至於利用列車端點站進出轉轍器特性,計算在該班表下各路線方向所需營運總成本,並考量與旅客時間價值間權衡抵換關係後,其結果建議若朝縮短班距方面著手,在尖峰時可調降至4分,離峰時則是以8分為佳,並應儘可能使紅、橘兩線班距相互對稱以縮短兩線之間轉乘等候時間。接下來將模式套入轉乘旅運量需求變動、各類路網型態與站體結構設計組合類型等各種不同情境下進行求解比較。結果指出班表安排隨運量需求較高的路段方向,來調整沿線各站間減速行駛,或延長停靠站時間配合各方向轉乘,以減少旅客轉乘等候時間。並針對不同路網結構,考慮各端點站發車時間差距分配及沿線運轉安排。轉乘站體結構與轉乘通道的設計型態,則會影響旅客轉乘步行時間的差異特性,同樣需列入運轉排班考量,因應各項情況下做出適當之時刻表安排調整,以提供最佳化的轉乘服務。

    Nowadays, many metropolitans have a convenient subway or MRT network system by which people can travel to their destinations through transferring between different lines. However, passengers would not like to spend too much time on waiting or transferring, especially for the case of “just miss” which may decrease service quality and custom satisfaction. Therefore, trying to arrange feeder and connecting trains for proper transfer, and to reduce waiting time, is a critical issue for operators. This research designed a timetable planning model for minimized transfer waiting time based on real operating data of Kaohsiung MRT system with two lines of red and orange. Transfer related analyses in past literatures mostly focus only on transfer station itself, so in this research, train operation planning on each segment of lines in whole network would be considered.
    Besides, for operators, some adjustments such as headway reducing for better transfer service could cause more costs. Therefore, this study would apply terminal restrictions for train cost calculating to find the trade-off between passengers’ time and operator’s cost. Finally, the model is also used to analyze suitable transfer arrangement under different situations of trip demands, network types and station configurations. The findings from this transfer optimizing model could be generally applied to relative railway service operations as some suggestions for transfer improvements in the future.
    The model solution indicates better improvements than current timetable used in Kaohsiung MRT system. The total transfer waiting time has around 35% savings in peak-hour periods, and almost 60% in off-peak hours. While considering the trade-off between passengers’ time value and operator’s cost, reducing headway from 5 to 4 minutes in peak hours and from 10 to 8 minutes in off-peak hours is suggested. Also, making the headway differences between red line and orange line smaller is better for passengers transferring between these two lines without waiting too long. Then the model is solved under different situations of transferring trip demands, route network and transfer station configuration design types. Situation analysis results show that trains running on sections or directions with larger transferring demand could be adjusted with lower running speed or longer stopping times at stations to make train connections smoother when arriving at transfer stations. Furthermore, train departure time at terminal stations of each line should be arranged with differences subject to kinds of route network types. The configuration and walking passageways design in transfer stations, which is relevant to passenger transfer walking time variations, should also be taken into consideration when planning the train timetable. In brief, train timetable with appropriate arrangements according to varieties of conditions could provide smoother connection between different trains of each line and better transfer services.

    摘 要 I Abstract III 致 謝 V 目 錄 VII 表 目 錄 IX 圖 目 錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究內容與目的 3 1.3 研究流程與架構 5 1.4 研究範圍與對象 7 第二章 文獻回顧 8 2.1 大眾運輸轉乘相關文獻 8 2.1.1 營運路線組合設計 9 2.1.2 準確轉車系統 (timed transfer) 11 2.1.3 轉乘最佳化 (optimized transfer) 13 2.1.4 小結 15 2.2 鐵路、捷運列車運轉時刻表排班問題相關文獻 15 2.2.1 列車運轉時刻表之生成(Timetable or Schedule Generation) 16 2.2.2 列車時刻表一致性問題模式 (TTSP) 17 2.3 轉乘議題相關文獻 19 2.4 文獻小結 21 第三章 模式建構 23 3.1 研究假設 23 3.2 列車時刻表轉乘最佳化問題模式 24 3.2.1 符號參數定義 27 3.2.2 決策變數 28 3.2.3 目標函數 28 3.2.4 限制式 29 3.2.5 端點站限制與成本計算 32 第四章 實證情境分析 37 4.1 現況分析 39 4.2 運轉參數設定 41 4.3 求解方法 43 4.4 模式結果與現況比較分析 47 4.5 成本分析 57 4.6 旅運需求情境分析 61 4.7 轉乘站交會位置情境分析 72 4.8 轉乘站數量情境分析 78 4.9 轉乘站結構設計型態情境分析 82 4.10 情境綜合統整分析 93 第五章 結論與建議 94 5.1 研究發現與結論 94 5.2 學術與實務貢獻 95 5.3 未來建議與方向 97 參考文獻 99

    中文部分:
    1.周義華、黃勵君,2002,“捷運系統營運路線組合設計之研究”,運輸計劃,第三十一卷第二期,頁323-360。
    2.林繼國、陳佩棻,2002,台灣地區軌道運輸系統整合規劃,交通部運輸研究所。
    3.香港地鐵公司,1999,“地鐵公司ㄧ九九八年度年報”。
    4.高雄捷運公司運務處運轉組,2010,“紅、橘線轉乘時間優化分析報告”。
    5.張有恆、蘇昭旭,2002,現代軌道運輸,台北:人人出版。
    6.張志榮,1994,都市捷運發展與應用,台北:建築情報雜誌社。
    7.張恩輔,2002,“捷運系統運轉整理之模擬分析”,國立成功大學交通管理科學研究所碩士論文。
    8.張學孔、涂保民、朱珮芸、許平和,1994,“捷運系統服務路線長度之最佳化研究”,中國土木水利工程學刊,第六卷第四期,頁445-455。
    9.謝興盛,2003,“捷運列車延誤時班距調整模式之模擬分析-以台北捷運中、高運量系統為例”,國立成功大學交通管理科學研究所博士論文。
    英文部分:
    1.Abkowitz, M., Josef, R., Tozzi, J., Driscoll, M.K., 1987, “Operational feasibility of timed transfer in transit systems,” Journal of Transportation Engineering, Vol. 113, No. 2, pp. 168-177.
    2.Adamski, A., 1995, “Transfer optimization in public transport,” J. R. Daduna, I. Branco, J. M. Pinto Paixão, eds., Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, Vol. 430, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 23-38.
    3.Andersson, P.A., Scalia-Tomba, G.P., 1981, “A mathematical model of an urban bus route,” Transportation Research Part B, Vol. 15, No. 4, pp. 249-266.
    4.Baaj, M.H., Mahmassani, H.S., 1991, “An AI-based approach for transit route system planning and design,” Journal of Advanced Transportation, Vol. 25, No. 2, pp. 187-210.
    5.Billionnet, A., 2003, “Using Integer Programming to Solve the Train-Platforming Problem,” Transportation Science, Vol. 37, No. 2, pp. 213-222.
    6.Bookbinder, J. H., A. Désilets. 1992, “Transfer optimization in a transit network,” Transportation Science, Vol. 26, No. 2, pp. 106-118.
    7.Brannlund, U., Lindberg, P. O., Nou, A., Nilsson, J. E., 1998, “Railway timetabling using Lagrangian relaxation,” Transportation Science, Vol. 32, No. 4, pp. 358-369.
    8.Brons, M., Givoni, M., Rietveld, P., 2009, “Access to railway stations and its potential in increasing rail use,” Transportation Research Part A, Vol. 43, No. 2, pp. 136-149.
    9.Bussieck, M., 1998, “Optimal Lines in Public Rail Transport,” Ph.D. thesis, TU Braunschweig, Braunschweig, Germany.
    10.Cai, X., Goh, C.J., 1994, “A Fast Heuristic for the Train Scheduling Problem,” Computers and Operations Research, Vol. 21, No. 5, pp. 499-510.
    11.Cameron, K., 1991, “The maximum edge-weighted clique problem in complete multipartite graphs,” Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 9, pp. 33-37.
    12.Caprara, A., Monaci, M., Toth, P., Guida, P. L., 2006, “A Lagrangian heuristic algorithm for a real-world train timetabling problem,” Discrete Applied Mathematics, Vol. 154, No. 5, pp. 738-753.
    13.Carey, M., Carville, S., 2003, “Scheduling and platforming trains at busy complex stations,” Transportation Research Part A, Vol. 37, No. 3, pp. 195-224.
    14.Ceder, A., Tal, O., 1999, “Timetable synchronization for buses,” N.H.M. Wilson, ed., Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, Vol. 471, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 245-258.
    15.Ceder, A., Yann Le Net, Caroline Coriat, 2009, “Measuring Public Transport Connectivity Performance Applied in Auckland, New Zealand,” Transportation Research Record: Journal of the Transportation Research Board, Vol. 2111, No. 16, pp. 139-147.
    16.Chien, S. I.-J., 2005, “Optimization of Headway, Vehicle Size and Route Choice for Minimum Cost Feeder Service,” Transportation Planning and Technology, Vol. 28, No. 5, pp. 359-380.
    17.Chowdhury, S., Chien, S. I.-J., 2001, “Dynamic vehicle dispatching at the intermodal transfer station,” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1753, No. 8, pp. 61-68.
    18.Clever, R., 1997, “Integrated timed transfer - A European perspective,” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1571, No. 14, pp. 107-115.
    19.Daduna, J. R., Branco, I., Pinto Paixão, J. M. eds., 1995, “Computer-Aided Transit Scheduling,” Lecture Notes in Economics and Mathematical Systems, Vol. 430, Springer-Verlag, Berlin, Heidelberg, Germany.
    20.Daduna, J. R., Voß, S., 1995, “Practical experiences in schedule synchronization,” J. R. Daduna, I. Branco, J. M. Pinto Paixão, eds., Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, Vol. 430, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 39-55.
    21.Désilets, A., 1989, “Optimization of transfers in a transit network,” Master’s thesis, University of Waterloo, Waterloo, Ontario, Canada.
    22.Dessouky, M., Hall, R., Nowroozi, A., Mourikas, K., 1999, “Bus dispatching at timed transfer transit stations using bus tracking technology,” Transportation Research Part C, Vol. 7, No. 4, pp. 187-208.
    23.Dessouky, M., Hall, R., Zhang, L., Singh, A., 2003, “Real-time control of buses for schedule coordination at a terminal,” Transportation Research Part A, Vol. 37, No. 2, pp. 145-164.
    24.Domschke, W., 1989, “Schedule synchronization for public transit networks,” OR Spektrum, Vol. 11, No. 1, pp. 17-24.
    25.Goverde, R. M. P., 1999, “Transfer Stations and Synchronization,” Technical report, TRAIL, Delft, The Netherlands.
    26.Guan, J. F., Yang, H., Wirasinghe, S. C., 2006, “Simultaneous optimization of transit line configuration and passenger line assignment,” Transportation Research Part B, Vol. 40, No. 10, pp. 885-902.
    27.Hall, R.W., 1985, “Vehicle scheduling at a transportation terminal with random delay en route,” Transportation Science, Vol. 19, No. 3, pp. 308-320.
    28.Higgins, A., Kozan, E., Ferreira, L., 1996, “Optimal scheduling of trains on a single line track,” Transportation Research Part B, Vol. 30, No. 2, pp. 147–161.
    29.Hsu, S. C., 2010, “Determinants of passenger transfer waiting time at multi-modal connecting stations,” Transportation Research Part E, Vol. 46, No. 3, pp. 404-413.
    30.Jolliffe, J. K., Hutchinson, T. P., 1975, “A behavior explanation of the association between bus and passenger arrivals at a bus stop,” Transportation Science, Vol. 9, No. 3, pp. 248-282.
    31.Jovanovic, D., Harker, P. T., 1991, “Tactical scheduling of rail operations: The SCAN I system,” Transportation Science, Vol. 25, No. 1, pp. 46-64.
    32.Katz, K. L., Larson, B. M., Larson, R. C., 1991, “Prescription for the waiting-in-line blues: entertain, enlighten, and engage,” Sloan Management Review, Vol. 32, No. 5, pp. 44-53.
    33.Klemt, W.-D., Stemme, W., 1988, “Schedule synchronization for public transit networks,” J. R. Daduna, A. Wren, eds., Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems, Vol. 308, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 327-335.
    34.Knoppers, P., Muller, T., 1995, “Optimized transfer opportunities in public transport,” Transportation Science, Vol. 29, No. 1, pp. 101-105.
    35.Kraay, D. R., Harker, P. T., Chen, B., 1991, “Optimal pacing of trains in freight railroads: Model formulation and solution,” Operations Research, Vol. 39, No. 1, pp. 82-99.
    36.Kraay, D. R., Harker, P. T., 1995, “Real-time scheduling of freight railroads,” Transportation Research Part B, Vol. 29, No. 3, pp. 213-229.
    37.Kroon, L. G., Peeters, L. W., 2003, “A Variable Trip Time Model for Cyclic Railway Timetabling,” Transportation Science, Vol. 37, No. 2, pp. 198-212.
    38.Kyte, M., Stanley, K., Gleason, E., 1982, “Planning, Implementing, and Evaluating a Timed-Transfer System in Portland, Oregon,” Transportation Research Record, Vol. 877, pp. 23-29.
    39.Lee, K. K. T., Schonfeld, P., 1992, “Optimal headway and slack times at multiple route timed-transfer terminals,” Transportation Studies Center Working Paper 92-22, University of Maryland, College Park.
    40.Lee, Y., Chen, C. Y., 2009, “A heuristic for the train pathing and timetabling problem,” Transportation Research Part B, Vol. 43, No. 8-9, pp. 837-851.
    41.Liebchen, C., 2003, “Symmetry for Periodic Railway Timetables,” Electronic Notes in Theoretical Computer Science, Vol. 92, pp. 34-51.
    42.Liebchen, C., R. H. Möhring, 2004, “The modeling power of the periodic event scheduling problem: Railway timetables—and beyond,” Technical Report 2004/20, Institüt für Mathematik, Technische Universität Berlin, Berlin.
    43.Lindner, T., Zimmermann, U. T., 2000, “Train Schedule Optimization in Public Rail Transport,” Ph.D. thesis, TU Braunschweig, Braunschweig, Germany.
    44.Mandl, C.E., 1980, “Evaluation and optimization of urban public transportation networks,” European Journal of Operational Research, Vol. 5, No. 6, pp. 396-404.
    45.Möhring, H., Schroeter, J., Wiboonchuikula, P., 1987, “The values of waiting time, travel time, and a seat on a bus,” RAND Journal of Economics, Vol. 18, No. 1, pp. 40-56.
    46.Nachtigall, K., 1996, “Periodic network optimization with different arc frequencies,” Discrete Applied Mathematics, Vol. 69, No. 1-2, pp. 1-17.
    47.Nachtigall, K., Voget, S., 1996, “A genetic algorithm approach to periodic railway synchronization,” Computers & Operations Research, Vol. 23, No. 5, pp. 453-463.
    48.Nachtigall, K., Voget, S., 1997, “Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks,” European Journal of Operational Research, Vol. 103, No. 3, pp. 610-627.
    49.Nelson, M., Brand, D., Mandel, M., 1981, “Use and Consequences of Timed Transfers on U.S. Transit Properties,” Transportation Research Record, Vol. 798, pp. 50-55.
    50.Odijk, M. A., 1994, “Construction of periodic timetables, Part I: A cutting plane algorithm,” Report 94-61, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands.
    51.Odijk, M. A., 1996, “A constraint generation algorithm for the construction of periodic railway timetables,” Transportation Research Part B, Vol. 30, No. 6, pp. 455-464.
    52.Quadrifoglio, L., Dessouky, M.M., Ordóñez, F., 2008, “Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints,” European Journal of Operational Research, Vol. 185, No. 2, pp. 481-494.
    53.Salzborn, F. J. M., 1980, “Scheduling Bus Systems with Interchanges,” Transportation science, Vol. 14, No. 3, pp. 211-231.
    54.Serafini, P., Ukovich, W., 1989, “A mathematical model for periodic scheduling problems,” SIAM Journal on Discrete Mathematics, Vol. 2, No. 4, pp. 550-581.
    55.Shafahi, Y., Khani, A., 2010, “A practical model for transfer optimization in a transit network: Model formulations and solutions,” Transportation Research Part A, Vol. 44, No. 6, pp. 377-389.
    56.Shih, M.-C., Mahmassani, H.S., 1994, “A design methodology for bus transit networks with coordinated operations,” SWUTC/94/60016-1, Center for Transportation, The University of Texas at Austin, Austin, Texas.
    57.Shih, M., Mahmassani, H.S., Baaj, M.H., 1997, “Trip assignment model for timed-transfer transit systems,” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1571, No. 4, pp. 24-30.
    58.Suhl, L., Biederbick, C., Kliewer, N., 2001, “Design of customer oriented dispatching support for railways,” S. Voß, J. R. Daduna, eds., Computer-Aided Scheduling of Public Transport, Lecture Notes in Economics and Mathematical Systems, Vol. 505, Springer-Verlag, Berlin, Heidelberg, Germany, pp. 365-386.
    59.Takagi, R., Goodman, C. J., Roberts, C., 2006, “Optimization of train departure times at an interchange considering passenger flows,” Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, Vol. 220, No. 2, pp. 113-120.
    60.Turnquist, M.A., 1978, “A model for investigating the effects of service frequency and reliability on bus passenger waiting times,” Transportation Research Record, Vol. 663, pp. 70-73.
    61.Vansteenwegen, P., D. Van Oudheusden, 2006, “Developing railway timetables which guarantee a better service,” European Journal of Operational Research, Vol. 173, No. 1, pp. 337-350.
    62.Vansteenwegen, P., D. Van Oudheusden, 2007, “Decreasing the passenger waiting time for an intercity rail network,” Transportation Research Part B, Vol. 41, No.4, pp. 478-492.
    63.Vromans, M. J. C. M., Dekker, R., Kroon, L. G., 2006, “Reliability and heterogeneity of railway services,” European Journal of Operational Research, Vol. 172, No. 2, pp. 647-665.
    64.Welding, P. I., 1957, “The instability of close interval service,” Operations Research Quarterly, Vol. 8, No.3, pp. 133-148.
    65.Wong, Rachel C. W., Yuen, Tony W. Y., Fung, Kwok Wah, Leung, Janny M. Y., 2008, “Optimizing Timetable Synchronization for Rail Mass Transit,” Transportation Science, Vol. 42, No. 1, pp. 57-69.
    66.Zhao, F., Zeng X., 2008, “Optimization of transit route network, vehicle headways and timetables for large-scale transit networks,” European Journal of Operational Research, Vol. 186, No. 2, pp. 841-855.
    67.Zhou, X., M. Zhong, 2007, “Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bounds,” Transportation Research Part B, Vol. 41, No. 3, pp. 320-341.

    下載圖示 校內:2014-02-18公開
    校外:2014-02-18公開
    QR CODE