| 研究生: |
劉宇軒 Liu, Yu-Hsuan |
|---|---|
| 論文名稱: |
錳摻雜於氮化鎵系列材料之光電特性研究與元件應用 Characterizations of Mn-Doped GaN-based Materials and Their Application to UV Photodetectors |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 氮化鎵 、光偵測器 、稀磁性半導體 |
| 外文關鍵詞: | GaN, MnGaN, Photodetector, DMS |
| 相關次數: | 點閱:47 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對氮化鎵摻雜錳材料的光電特性與應用於紫外光偵測器的特性探討之研究,材料光電特性包含穿透率與霍爾量測,而元件的部分包括金屬-半導體-金屬光偵測器與p-i-n光偵測器,我們將氮化鎵摻雜錳材料應用於光偵測器的吸收層,分別量測暗電流(dark current)、照光光電流(photocurrent)及光響應度(responsivity),與傳統以氮化鎵材料為吸收層的光偵測器作比較。
根據穿透率量測的結果,氮化鎵摻雜錳材料在禁帶會形成雜質能階,因此材料除了吸收能量大於能隙的光子之外,也會吸收能量大於雜質能階與價(導)電帶間能量差值的光子,我們利用此特性將MnGaN材料應用於光偵測器的吸收層,其在響應值曲線的表現與氮化鎵材料為吸收層的光偵測器比較有著截然不同的結果,以MnGaN材料當作吸收層的元件為具有二階響應效果的光偵測器,即單一元件可偵測兩種不同的波長,此特性對於光通訊方面將可提供多元的應用。
This study focuses on the optical-electrical characteristics of manganese-doped GaN (MnGaN) materials for application in UV photodetectors (PDs). The optical-electrical characteristics of the materials include transmittance and Hall measurements. The MnGaN materials were applied to the absorption layers and fabricated into two types of PD devices, namely, metal-semiconductor-metal and p-i-n PDs. By measuring dark current, photocurrent, and responsivity, PDs with MnGaN absorption layers were systematically compared with Mn-free GaN-based PDs.
According to the transmittance measurement, MnGaN materials exhibited impurity levels in the forbidden band. Therefore, photons with more energy than material bandgaps are absorbed. Photons that have energy greater than the difference between the impurity level and the valence (conduction) band are absorbed as well. Compared with that of Mn-free GaN-based PDs, the photo response of MnGaN-based PDs exhibited band-to-band and impurity level transition; hence, two different wavelength regions of light are detected. That is, a single MnGaN-based PD device exhibits two-step-responsivity characteristics, which can be widely applied to optical communications.
第一章
[1] E. Fred Schubert, “Light-Emitting Diodes” Second Edition, CAMBRIDGE, New York, P410, (2006).
[2] A. F. M. Anwar, Shangli Wu, and Richard T. Webster, “Temperature Dependent Transport Properties in GaN, AlxGa1-xN, and InxGa1-xN Semiconductors”, IEEE TRANSACTIONS ON ELECTRON DEVICES VOL.48, NO.3, pp. 567-572, (2001).
[3] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm, and M. S. Shur, “Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol. 65, pp. 1121, (1994).
[4] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca, and S. J. Pearton, “300°C GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J. Nitride Semicond. Res. Vol. 3, 41, (1998).
[5] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Oslon, “Metal semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett. Vol. 62, pp. 1786, (1993).
[6] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol. Vol. 14, pp. R27, (1999).
[7] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett. Vol. 63, pp. 2455, (1993).
[8]胡裕民, “III-V稀磁性半導體薄膜之研究與發展”, 物理雙月刊(二十六卷四期), 8月(2004).
[9]張慶瑞, 蘇又新, “巨磁阻物理之歷史與展望-從2007年物理諾貝爾獎談起”, 物理雙月刊(三十卷二期), 4月(2008).
[10] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, and M. J. Reed, “Room temperature ferromagnetic properties of (Ga, Mn)N”, Appl. Phys. Lett. vol. 79, pp. 3473, (2001).
[11] F. E. Arkun, M. J. Reed, E. A. Berkman, and N. A. El-Masry, “Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN:Mg interface”, Appl. Phys. Lett. vol. 85, pp. 3809, (2004).
[12] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame,and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, pp. 2917, (1992).
[13] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, “High-performance GaN p–n junction photodetectors for solar ultraviolet applications” , Semicond. Sci. Technol. vol. 13, pp. 1042-1046, (1998).
[14] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K. Mishra, “High performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett. vol. 75, pp. 247-249, (1999).
[15] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, “High quality visible-blind algan p–i–n photodiodes”, Appl. Phys. Lett. vol. 74, pp. 1171-1173, (1999).
[16] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett. vol. 70, pp. 2277-2279, Apr. (1997).
[17] Z. C. Huang, J. C. Chen, and D. Wickenden, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Cryst. Growth vol. 170, pp. 362-362, (1997).
[18] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photon. Technol. Lett. vol. 13, pp. 848-850, (2001).
[19] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High speed, low noise metal-semiconductor-metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett. vol. 74, pp. 762-764, (1999).
第二章
[1] Dieter K. Schroder, “Semiconductor material and device characterization”, A Wiley-Interscience Publication, chap. 3, (1998).
[2] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition”, WILEY, chap.7.1, (2001)
[3] D. A. Neamen, “半導體物理與元件(三版)” 麥格羅希爾出版, chap. 9.1, (2003)
[4]黃鋒文, “非極性氮化銦鎵/氮化鎵材料與元件光電特性之探討”, 國立成功大學光電科學與工程研究所, 碩士論文, (2008).
[5] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, chap.3, (2001).
[6] S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker, “Evidence For Tunneling in Reverse-Biased III-V Photodetector Diodes”, Appl. Phys. Lett., Vol. 36, No. 7, p. 580, (1980).
[7] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47As Photodiode With Dark Current Limited by Generation- Recombination And tunneling”, Appl. Phys. Lett., Vol. 37, No. 3, p. 217, (1981).
[8] Schubert F. Soares, “Photoconductive Gain in a Schottky Barrier Photodiode”, Jap. J. Appl. Phys. Vol. 31, pp. 210, (1992).
[9] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 314, (2001).
[10] O. Katz ,V. Garber, B. Meyler, G. Bahir, and J. Salzman , “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry”, Appl. Phys. Lett., Vol. 80, No. 3, p. 347, (2002).
[11] N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, “ Magnetic and structural properties of Mn-implanted GaN”, Appl. Phys. Lett. 78, p. 3475 (2001).
[12] P. Boguslawski and J. Bernholc, “ Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N”, Phys. Rev. B 72, 115208, (2005).
[13] N. Nepal, Amr M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, “Correlation between photoluminescence and magnetic properties of GaMnN films”, Appl. Phys. Lett. 91, 242502, (2007).
[14] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Optical properties of the deep Mn acceptor in GaN:Mn”, Appl. Phys. Lett. 80, p. 1731, (2002).
[15] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, “ The Mn3+/2+ acceptor level in group III nitrides”, Appl. Phys. Lett. 81, p. 5159, (2002).
[16] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy”, Physica B 308, 30, (2001).
[17] F. E. Arkun, A. M. Mahros, N. A. El-Masry, J. Muth, X. Zhang, J. M. Zavada, and S. M. Bedair, Materials Research Society Symposia Proceedings vol. 955 (Materials Research Society, Pittsburgh, 2006), p. 0955-I07-02.
[18] S. M. Sze, “SEMICONDUCTOR DEVICE Physics and Technology 2nd Edition, WILEY”, p. 33, (2001).
[19] Amr M. Mahros, M. O. Luen, A. Emara, and S. M. Bedair, “Magnetic and magnetotransport properties of (AlGaN/GaN):Mg/(GaMnN) heterostructures at room temperature”, Appl. Phys. Lett. 90, 252503, (2007).
校內:2013-07-20公開