簡易檢索 / 詳目顯示

研究生: 粘覺元
Nien, Chueh-Yuan
論文名稱: 有機薄膜場效電晶體之磁電導響應
Magneto Conductance Responses in Organic Field-effect Transistors
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 磁電導場效電晶體磁效應單重態分裂機制
外文關鍵詞: magneto conductance, magnetic field-effect transistor, singlet fission
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究著重於有機場效電晶體的磁效應來源與機制探討,透過我們實驗室製程以成熟的有機場效電晶體來做量測。第一部份我們以單載子傳輸的有機場效電晶體做磁效應量測,發現只有照光才有磁電導效應,明顯指出了磁效應來源與激發態有關。第二部分以雙載子傳輸的有機場效電晶體做磁效應量測,不同於已往團隊,我們所得到的磁電導變化曲線線形明顯,有利於之後做模擬分析。而該部分的磁效應來源也是與激發態相關,再來我們透過激發子漂移距離的改變,發現主要機制是以分裂(Fission)這機制在磁場下會影響單重態變成三重態激發子的數目,因此產生正磁電導,然後我們也改變了幾項實驗條件來證實機制的正確性。最後我們這實驗提出不同於已往在長通道的電晶體下依舊可觀察到磁效應,而來源則為外加磁場影響的分裂(Fission)機制所造成。

    We investigated magneto conductance(MC) responses in pentacene-based field-effect transistors (FETs). The first part of our research is focus on unipolar OFET which was only found the MC under photo-excitation. Obviously, this effect is dependent to excited states. The second part is focus on ambipolar OFET. We got good performance of lineshapes under magnetic field which is advantage of data analysis in the future. The magnetic field effect in this part is dependent to excited states, too. We found that "Singlet Fission" affects numbers of singlet to triplet excitons through the variance of excitons diffusion distance. Therefore, "Singlet Fission" under magnetic field leads to +MC. After this, we proofed whether this magnetic field effect works by substitute of different condition. Finally, our work suggests that MC response is still observable in long channel length FETs, which is attributed to the long lifetime of the triplet exciton follows by "Singlet Fission."

    考試合格證明……………….………………………………………………………….…I 摘要……………….…………………………………………………………………....…II Extended Abstract……………………………………………………………...…...……III 致謝……………………………………………………………....……...………………XI 目錄………………………………………………………………………………......…XII 表目錄…………………………………………………………………...………...…..XIV 圖目錄……………………………………………………………………………...…...XV 第一章 研究領域與實驗動機 1 1-1 前言 1 1-2 有機磁場效應 1 1-2-1 激發態模型 1 1-2-1 單載子傳輸模型 8 1-3 有機薄膜電晶體之磁效應演進 10 1-4 實驗研究動機 13 1-5 大綱 14 第二章 有機磁效應導論 15 2-1 氫原子模型 15 2-2 自旋軌道偶合作用(Spin-orbital coupling) 15 2-3 超精細結構(Hyperfine interaction) 17 2-4 黎曼效應(Zeeman effect) 18 2-5 交換偶合作用力(Exchange interaction) 19 2-6 激發態磁場效應 20 2-7 分子內與分子間激發態 20 2-8 內部系統間轉移 21 2-9 電子、電洞對分離能力 22 2-10 激發態能量轉換路徑 23 2-10-1 三重態激發子與載子交互作用(Triplet-charge reaction model) 23 2-10-2 三重態激發子與極化子交互作用(Triplet polaron interaction model) 25 2-11 有機場效電晶體磁電導效應的機制 28 2-12 結論 34 第三章 元件製作與量測流程 35 3-1 有機場效電晶體基本架構 35 3-2 ITO基板圖案畫 36 3-2-1 基板切割 36 3-2-2 基板清洗 36 3-2-3 黃光微影 36 3-3 樣品ITO玻璃切割與清潔 39 3-3-1 ITO玻璃樣品切割 39 3-3-2 棉花棒擦拭與初步清潔 39 3-3-3 超音波震盪器震洗 39 3-3-4 樣品表面烘乾 40 3-4 閘極介電層製作 40 3-4-1 UV-zone處理 40 3-4-2 閘極修飾層製作 40 3-4-3 閘極介電層製作 41 3-5 主動層-有機半導體層製作 42 3-6 源極與汲極之電極製作 44 3-7 元件封裝 44 3-8 元件量測 46 3-8-1 元件量測架設 46 3-8-2 電性量測 46 3-8-3 磁電導效應量測 46 3-9 結論 49 第四章 有機場效電晶體磁效應探討 50 4-1 前言 50 4-2 單載子傳輸的有機場效電晶體其電性量測特性 52 4-3 單載子傳輸的有機場效電晶體其磁效應量測特性 54 4-4 雙載子傳輸的有機場效電晶體其電性量測特性 56 4-5 雙載子傳輸的有機場效電晶體其磁效應量測特性 58 4-6 討論透過閘極電壓改變載子注入的平衡程度對磁效應組成的影響 61 4-7 討論激發態在磁電導效應所走的反應機制 62 4-8 討論何種激發態解離貢獻到磁電導效應 67 4-9 討論分裂(Fission)機制在OFET中對磁電導效應的影響 70 4-10 研究改變激發子漂移距離對OFET磁電導效應的影響 72 4-11 研究改變電極對激發子的解離能力對OFET磁電導效應的影響 75 4-12 結論 77 第五章 結論與未來工作 78 5-1 結論 78 5-2 未來工作 79 參考資料 80

    [1]C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene,” Phys. Rev. Lett. 39, 1098 (1977).
    [2]A. Köhler, J. S. Wilson, and R. H. Friend, “Fluorescence and phosphorescence in organic materials,” Adv. Mater. 14, 701 (2002).
    [3]R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121 (1999).
    [4]M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells,” Adv. Mater. 20, 2116 (2008).
    [5]D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884 (2006).
    [6]D. Braga, and G. Horowitz, “Hige-performance organic field-effect transistors,” Adv. Mater. 21, 1473 (2009).
    [7]J. Cornil, J. L. Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar transport in organic conjugated materials,” Adv. Mater. 19, 1791 (2007).
    [8]R. E. Merrifield, “Theory of magnetic field effects on the mutual annihilation of triplet excitons,” J. Chem. Phys. 48, 4318 (1968).
    [9]V. Ern, and R. E. Merrifield, “Magnetic field effect on triplet exciton quenching in organic crystals,” Phys. Rev. Lett. 21, 609 (1968).
    [10]R. P. Groff, R. E. Merrifield, A. Suna, and P. Avakian, “Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in an organic crystal,” Phys. Rev. Lett. 29, 823 (1972).
    [11]E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generation in poly(phenylene vinylenes),” Phys. Rev. B 46, 9320 (1992).
    [12]E. L. Frankevich, “On mechanisms of population of spin substates of polaron pairs,” Chem. Phys. 297, 315 (2004).
    [13]V. Dyakonov, and E. L. Frankevich, “On the role played by polaron pairs in photophysical processes in semiconducting polymers,” Chem. Phys. 227, 203 (1998).
    [14]J. Kalinowski, J. Szmytkowski, and W. Stampor, “Magnetic hyperfine modulation of charge photogeneration in solid films of Alq3,” Chem. Phys. Lett. 378, 380 (2003).
    [15]J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380, 710 (2003).
    [16]Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices,” Phys. Rev. B 72, 205202 (2005).
    [17]M. Wohlgenannt, and Z. V. Vardeny, “Spin-dependent exction formation rates in π–conjugated materials,” J. Phys. Condens. Matter 15, R83 (2003).
    [18]M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
    [19]I. V. Tolstov, A. V. Belov, M. G. Kaplunov, I. K. Yakuschenko, N. G. Spitsina, M. M. Triebel, and E. L. Frankevich, “On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS,” J. Lumin. 112, 368 (2005).
    [20]B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors,” Nature Mater. 6, 985 (2007).
    [21]Z. Xu and B. Hu, “Photovoltaic Processes of Singlet and Triplet Excited States in Organic Solar Cells,” Adv. Funct. Mater. 18, 2611 (2008).
    [22]P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “Magnetoresistance and efficiency measurements of Alq3-based OLEDs,” Phys. Rev. B 75, 094423 (2007).
    [23]P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “Magnetoresistance in organic light-emitting diode structures under illumination,” Phys. Rev. B 76, 235202 (2007).
    [24]P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, “The role of magnetic fields on the transport and efficiency of aluminum tris(8-hydroxyquinoline) based organic light emitting diodes,” Appl. Phys. Lett. 102, 073710 (2007).
    [25]N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline),” Phys. Rev. B 80, 241201R (2009).
    [26]P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M.Wohlgenannt, “Bipolaron mechanism for organic magnetoresistance,” Phys. Rev. Lett. 99, 216801 (2007).
    [27]F. J. Wang, H. Bässler, and Z. V. Vardeny, “Magnetic field effects in π–conjugated polymer-fullerene blends: Evidence for multiple components,” Phys. Rev. Lett. 101, 236805 (2008).
    [28]M. Nishioka, Y.-B. Lee, A. M. Goldman, Y. Xia and C. D. Frisbie, “Negative magnetoresistance of organic field effect transistors,” Appl. Phys. Lett. 91, 092117 (2007).
    [29]T. Reichert and T. P. I. Saragi, “Photoinduced magnetoresistance in organic field-effect transistors,” Appl. Phys. Lett. 98, 063307 (2011).
    [30]T. P. I. Saragi and T. Reichert, “Magnetic-field effects in illuminated tetracene field-effect transistors, ” Appl. Phys. Lett. 100, 073304 (2012).
    [31]T. Reichert, T. P. I. Saragi and J. Salbeck, “Magnetoresistive field-effect transistors based on organic donor–acceptor blends,” R. Soc. Chem. Adv. 2, 7388 (2012).
    [32]S.-T. Pham, Y. Kawasugi, and H. Tada, “Organic magnetoresistance in ambipolar field-effect transistors,” Appl. Phys. Lett. 103, 143301 (2013).
    [33]S.-T. Pham and H. Tada, “Magnetoluminescence of light-emitting field-effect transistors based on alpha sexithiophene,” Appl. Phys. Lett. 104, 133301 (2014).
    [34]B. Hu, L. Yan and M. Shao, “Magnetic-Field Effects in Organic Semiconducting Materials and Devices,” Adv. Mater. 21, 1500 (2009).
    [35]P. Shakya, P. Desai, T. Kreouzis, W. P. Gillin, S. M. Tuladhar, A. M. Ballantyne, and J. Nelson, “The effect of applied magnetic field on photocurrent generation in poly-3-hexylthiophene:[6,6]-phenyl C61-butyric acid methyl ester photovoltaic devices,” J. Phys.: Condens. Matter 20, 452203 (2008).
    [36]J.-W. Chang, P.-W. Liang, M.-W. Lin, T.-F. Guo, T.-C. Wen, Y.-J. Hsu, “An ambipolar to n-type transformation in pentacene-based organic field-effect transistors,” Org. Electron 10, 1016 (2011).
    [37]M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo and R. H. Friend, “Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene,” J. Am. Chem. Soc. 133, 11830 (2011).
    [38]J. Lee, P. Jadhav, P. D. Reusswig, S. Yost, N. J. Thomposn, D. N. Congreve, E. Hontz, T. V. Voorhis, and M. A. Baldo, “Singlet Exciton Fission in Polycrystalline Pentacene: From Photophysics toward Devices,” Acc. Chem. Res. 10, 1021 (2013).
    [39]P. J. Jadhav , P. R. Brown , N. Thompson , B. Wunsch ,A. Mohanty , S. R. Yost , E. Hontz , T. V. Voorhis , M. G. Bawendi , V. Bulovic , and M. A. Baldo, “Triplet Exciton Dissociation in Singlet Exciton Fission Photovoltaics,” Adv. Mater. 24, 6169 (2012).
    [40]J. Zaumseil and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors,” Chem. Rev 107, 1296 (2007).
    [41]F. Cicoira, C. Santato, F. Dinelli, M. Murgia, M. A. Loi, F. Biscarini, R. Zamboni, P. Heremans and M. Muccini, “Morphology and Field-Effect-Transistor Mobility in Tetracene Thin Films,” Adv. Funct. Mater. 15, 375 (2005).
    [42]A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. von Seggern, “Light-Emitting Field-Effect Transistor Based on a Tetracene Thin Film,” Phys. Rev. Lett. 91, 157406 (2003).
    [43]C. Santato, I. Manunza, A. Bonfiglio, F. Cicoira, P. Cosseddu, R. Zamboni, and M. Muccini, “Tetracene light-emitting transistors on flexible plastic substrates,” Appl. Phys. Lett. 86, 141106 (2005).
    [44]P. M. Zimmerman, F. Bell, D. Casanova, and M. H. Gordon, “Mechanism for Singlet Fission in Pentacene and Tetracene: From Single Exciton to Two Triplets,” J. Am. Chem. Soc. 133, 19944 (2011).
    [45]M. B. Smith and J. Michl, “Singlet Fission,” Chem. Rev. 110, 6891 (2010).

    無法下載圖示 校內:2019-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE