| 研究生: |
陳彥方 Chen, Yen-fang |
|---|---|
| 論文名稱: |
俱水平轉運之二階層存貨系統再訂購點暨固定訂購批量模式 A two-echelon (s, Q) inventory model with lateral transshipment |
| 指導教授: |
李賢得
Lee, Shine-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 批次訂購政策 、再訂購點 、水平轉運 、二階層存貨 |
| 外文關鍵詞: | reorder point, lateral transshipment, (s Q) policy, two-echelon inventory system |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討二階層存貨配銷系統中,當零售點之間可利用水平緊急轉運機制之上下兩階層存貨控制問題,其中第一階層有一個中央倉儲,第二階層包含多個零售點。俱水平轉運之存貨問題近年來逐漸受到重視,目前探討水平轉運的相關存貨文獻中,大多在既定或已知的存貨控制政策下決定水平轉運之機制,本研究則針對俱水平轉運之二階層存貨問題建立其最佳或近似最佳存貨政策模式,以決定上下階層之最適再訂購點與訂購批量。
本研究發展水平緊急轉運之二階層再訂購點暨固定訂購批量期望成本模式,依據隨機理論中之重新報酬過程與定理,進而建構中央倉儲及零售點之庫存與缺貨相關成本,以及重新過程中之期望週期時間,建立單位時間期望總庫存相關成本模式。本研究目的在決定中央倉儲及零售點之最佳再訂購點與訂購批量,使單位時間庫存相關總成本最小化。模式之成本結構包含:中央倉儲訂購成本、中央倉儲存貨持有成本、中央倉儲遇缺補貨成本、零售點訂購成本、零售點存貨持有成本、零售點遇缺補貨成本及零售點發生缺貨時利用水平轉運產生之緊急水平轉運成本。
依據所建立俱水平轉運之二階層再訂購點暨固定訂購量期望成本模式,本研究延伸多維搜尋演算法,求得中央倉儲及零售點之最佳再訂購點與訂購批量,使單位時間相關總成本最小化。由演算實驗結果可以發現,在存貨系統總成本表現上,俱水平轉運之二階層存貨系統明顯優於古典之二階層存貨系統,當中央倉儲缺貨成本越低,零售點前置時間越長,水平轉運時間越短,零售點存貨持有成本越高,或零售點缺貨成本越高以及水平轉運成本越低時,使用水平轉運系統的效益越顯著。
We consider a two-echelon inventory system with one warehouse and N identical retailers, where lateral transshipment is allowed when stockout occurs in the second echelon. A reorder-point, fixed order-quantity (s, Q) inventory policy is implemented in the system. Leadtimes of the warehouse, the retailers and that of lateral transshipment are all constant, and the retailers face Poisson demand processes. The reorder point and order-quantity of the warehouse are multiples of the retailer order-quantity.
The expected total relevant cost model for the described system is developed in the thesis. It includes ordering cost, inventory carrying cost and shortage cost at the warehouse, and ordering cost, inventory carrying cost, shortage cost and lateral transshipment cost at the retailers. A geometric approximation scheme is used to estimate the expected demand rate when retailer faces shortage and transshipment of stock is used to satisfy the demand.
A discrete-search heuristic is developed to find the optimal inventory policy. The cost model and its solution procedure is illustrated by a numerical example. Numerical experiments based on fractional factorial design, have shown that the expected operating cost of the system with lateral transshipment is significantly lower than that in the classical model without transshipment. It is advantageous to implement the transshipment policy when the shortage cost of the warehouse is low, the shortage cost of the retailer is high, the retailer lead time is long, the lateral transshipment cost is low, or the lateral transshipment lead time is short.
一、中文部分
彭薇聿,民國九十二年。兩階層可維修商品庫存系統批次存貨模式發展,國立成功大學工業管理研究所碩士論文。
黃俊寧,民國九十三年。二階存貨配銷系統轉運之研究,國立交通大學工業工程與管理研究所博士論文。
李駿宏,民國八十七年。平行供貨二階(S-1, S)存貨系統之研究,國立交通大學工業工程與管理研究所碩士論文。
二、英文部分
Alfredsson, P., Verrijdt, J., 1999. Modeling emergency supply flexibility in a two-echelon inventory system. Management Science 45, 1416-1431.
Axster, S, 1990. Modeling emergency lateral transshipments in inventory systems. Management Science 36, 1329-1338.
Axster, S., Forsberg, R., Zhang, W.F., 1994. Approximate general multi-echelon inventory systems by Poisson models. International Journal of Production Economics 35, 201-206.
Axster, S., 1998. Evaluation of installation stock based (R, Q)-policies for two-level inventory systems with Poisson demand. Operations Research 46, s135-145.
Axster, S., 2000. Exact analysis of continuous review (R, Q) Policies in two echelon inventory systems with compound Poisson demand. Operations Research 48, 686-696.
Bertrand, L.P., Bookbinder, J.H., 1998. Stock redistribution in two-echelon logistics systems. Journal of Operational Research Society 49, 966-975.
Bazaraa, M.S.,Shatty, C.M., 1979. Nonlinear Programming: Theory & Algorithm. John Wiley & Sons, New York.
Dada, M.,1992. A two-echelon inventory system with priority demand. Management Science 38, 1140-1153.
Das, C., 1976. Explicit formulas for the order size and the reorder point in certain inventory problems. Naval Research Logistic 22, 25-30.
Diks, E.B., De Kok, A.G., 1996. Controlling a divergent two-echelon network with transshipments using the consistent appropriate share rationing policy. International Journal of Production Economics 45, 369-379.
Donaldson, W., 1974. The allocation of inventory items to lot size/reorder level (Q, r) and periodic review (T, Z) control. Operations Research 25, 481-485.
Evers, P.T., 2001. Heuristics for assessing emergency transshipments. European Journal of Operational Research 129, 311-316.
Forsberg, R., 1996. Exact evaluation of (R, Q)-policies for two-level inventory systems with Poisson demand. European Journal of Operational Research 96, 130-138.
Graves, S.C., 1985. A multi-echelon inventory model for a repairable item with one-for-one replenishment. Management Science 31, 1247-1256.
Herer, Y.T., Rashit, A., 1999. Lateral stock transshipments in a two-location inventory system with fixed and joint replenishment costs. Naval Research Logistic 46, 525-542.
Jnsson, H., Silver, E.A., 1987. Ayalysis of a two-echelon inventory control system with complete redistribution. Management Science 33, 215-227.
Krishnan, K.S., Rao, V.R., 1965. Inventory control in N warehouses. Journal of Industrial Engineering 16, 212-215.
Kukreja, A., Schmidt, C.P., Miller, D.M., 2001. Stocking decisions for low-usage items in a multilocation inventory system. Management Science 47, 1371-1383.
Kukreja, A., Schmidt, C.P., 2005. A model for lumpy demand parts in a multi-location inventory system with transshipments. Computers and Operations Research 32, 2059-2075.
Lee, H.L., 1987. A multi-echelon inventory model for repairable items with emergency lateral transshipment. Management Science 33, 1302-1316.
Minner, S., Silver, E.A., 2005. Evaluation of two simple extreme transshipment strategies. International Journal of Production Economics 93-94, 1-11.
Minner, S., Silver, E.A., Robb, D.J., 2005. An Improved Heuristic of Deciding on Emergency Transshipments. European Journal of Operational Research 148, 384-400.
Robinson, L.W., 1990. Optimal and approximate policies in multiperiod, multilocation inventory models with transshipments. Operations Research 38, 278-295.
Scarf, H., 1960. The optimality of (s, S) policies in the dynamic inventory problem. Mathematical Methods in the Social Science. Stanford, Calig: Stanford University Press, Chapter13.
Schneider, H., 1981. Effects of service-level on order-levels in inventory models. International Journal of Production Research 19(6), 615-631.
Sherbrooke, C.C., 1992. Multiechelon inventory systems with lateral supply. Naval Research Logistics 39, 29-40.
Silver, E.A., Pyke, D.F., Peterson, R., 1998. Inventory Management and Production Planning and Scheduling, 3rd ed, John Wiley & Sons, New York.
Svoronos, A., Zipkin, P., 1988. Estimating the performance of multi-level inventory systems. Operations Research 36, 57-72.
Tagaras, G., 1989. Effects of pooling on the optimization and service levels of two-location inventory systems. IIE Transactions 21, 250-257.
Tagaras, G., Cohen, M.A., 1992. Pooling in two-location inventory systems with non-negligible replenishment lead times. Management Science 38, 1067-1083.
Tagaras, G., 1999. Pooling in multi-location periodic inventory distribution systems. Omega 27, 39-59.
Tijms, H.C., 1983. On the numerical calculation of the reorder point in (s, S) inventory system with gamma distribution lead time demand. Research Report No. 95, Department of Actuarial Science and Economics, Vrije University, Amsterdam, Holland.
Xu, K., Evers, P.T., Fu, M.C., 2003. Estimating customer service in a two-location continuous review inventory model with emergency transshipments. European Journal of Operational Research 145, 569-584.