簡易檢索 / 詳目顯示

研究生: 林沂品
Lin, Yi-Pin
論文名稱: 具自體通風效果太陽光電建築構造(Ventilated BIPV)之通風與節能效益分析
Ventilation and Energy-Efficient Performance of Ventilated Building Integrated Photovoltaic Constructions
指導教授: 江哲銘
Chiang, Che-Ming
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: Ventilated BIPVCFD數值模擬熱移除率室內熱得換氣率
外文關鍵詞: Ventilated BIPV, CFD numerical simulation, Heat removal rate, Indoor heat gain, ACH
相關次數: 點閱:222下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球氣候劇烈變化,地球能資源匱乏成為最迫切的問題,建築為地球環境最龐大的建設,所消耗的能資源相對也較多,若能在建築設計之初即加入自然的手法、達到節能效益之目的,將對地球永續環境有極大的貢獻。
    本研究以整合建築構造、熱流技術以及太陽光電系統,以太陽光電系統與建材一體化為主要的發展方向,建構出一種可以進行「自體環境控制」的Ventilated BIPV構造,利用自然力與「雙層化構造(Double Skin)」的方式,帶走太陽光電模板自身之熱能,同時也能誘導出室內通風與散熱之功效。研究目的:(1)瞭解PV光電系統與建築構造結合之設計相關問題,研發合宜的Ventilated BIPV單元,以達到最佳效能。(2)藉由熱流實驗與CFD數值模擬建構,建立BIPV在CFD模擬之可行性,並瞭解其熱流行為與散熱之功效。(3)探討BIPV外牆之流道寬度與室內通風口高度對其自體散熱效果與室內熱得情形,期可提供作為日後設計之參考依據。(4)建構不同風速(0.5m/s 、1.0m/s、2.0m/s)自然通風狀況下,Ventilated BIPV環控構造之通風與節能效益。
    研究結果顯示, 在屋頂BIPV方面之節能效益可達到86%以上;在外牆BIPV方面,可發現流道越窄時,氣流場由流道入口進入之風速值越大,但經過到室內通風口時則較小,因而使流道內之風速流場增大;BIPV構造內之風速與溫度現象,流道內之溫度隨著距離衰減,最高為54.9℃,最低為約降至31.9℃。就熱移除效率而言,BIPV之熱傳較RC構造平均約減少65~73.6%,比鋼構減少38.8~53.9%;一天並可省下約4~11度電,一個月約可省下70~200kg的CO2排放量;引致之換氣效益方面,低風速時流道寬度對換氣次數影響並不明顯, ACH平均約為2.2~2.7;高風速時換氣次數隨著流道寬度加寬而變大,平均分別約為3.5~5.4及9.8~10.9。

    Due to dramatic changes in global climate, lack of energy resources has become one of the most pressing issues. As the major establishment in the global environment, buildings consume relatively more energy resources. If natural ways are applied in the beginning of architectural design to achieve the purpose of saving energy, it will contribute significantly to the sustainable environment of Earth.
    By integrating the building structure, heat flow technology and solar photovoltaic system, this study aims to combine solar photovoltaic system into building materials, in order to design a Ventilated BIPV structure of “self environmental control”. The design can take away the heat produced by solar photovoltaic panels via natural force and “Double Skin” method, while induce indoor ventilation and achieve the cooling effect. The research purposes are: (1) to understand issues related to the design of integrating PV photovoltaic system with building structure, develop proper Ventilated BIPV units to achieve optimal performance; (2) by heat flow experiments and CFD numerical simulation construction, to explore the feasibility of BIPV in CFD simulation and understand its heat flow behavior and heat radiation effects; (3) to discuss the impact of BIPV exterior wall passage width and indoor vent height on self heat radiation and indoor heat gain to provide a reference to follow-up designs; (4) to explore the ventilation and energy saving efficiency of Ventilated BIPV environmental control structure under natural ventilation conditions of different wind speeds (0.5m/s , 1.0m/s, 2.0m/s).
    Results suggested that, for BIPV exterior walls, the wind speed of flow field at the flow entrance is faster if the flow channel is narrower and slower at the indoor vent, resulting in expanding flow field inside the flow channel. With regard to the wind speed and temperature inside the BIPV structure, the temperature decreases along with distance from the highest temperature at 54.9℃ to the lowest temperature around 31.9℃. As for heat removal efficiency, the heat transfer of BIPV declines, in an average, by 65~73.6% as compared with RC structure, and by 38.8~53.9% as compared with steel structure to save about 4~11 KWH per day and about 70~200kg CO2 emission per month. In terms of heat exchange efficiency, the impact of flow channel width in case of low wind speed on number of heat exchange is not significant, and the average ACH is about 2.2~2.7. The number of heat exchange increases along with the increasing flow width in case of high wind speed, and the average ACH is about 3.5~5.4 and 9.8~10.9.

    目 錄 摘要................................................i Abstract............................................ii 誌謝....................................................iii 表目錄................................................vii 圖目錄..................................................ix 符號說明................................................xi 第一章 緒論.............................................1-1 1-1 研究動機與目的.................................1-1 1-2 研究範圍與架構.................................1-4 1-3 研究方法......................................1-5 1-4 研究流程......................................1-7 第二章 文獻回顧.........................................2-1 2-1 自然通風理論...................................2-1 2-2 PV與Ventilated BIPV...........................2-5 2-2-1 由太陽光電(PV)發展至Ventilated BIPV....2-5 2-2-2 BIPV之設計.............................2-6 2-3 熱環境基本原理.................................2-14 2-4 評估方式選定...................................2-18 2-4-1 熱移除率(Heat removal rate)評估........2-18 2-4-2 節能效益評估............................2-19 2-4-3 換氣率評估原則..........................2-21 第三章 研究方法.........................................3-1 3-1 基本環境設定....................................3-1 3-1-1 台灣地區環境現況..........................3-1 3-1-2 空間單元選定與變因設定.....................3-5 3-2 數值模擬基本假設與應用...........................3-10 3-2-1 數值模擬之發展與應用......................3-10 3-2-2 CFD數值模擬電腦軟體使用流程...............3-12 3-2-3 紊流模型................................3-13 3-2-4 CFD數值模擬之解析方式.....................3-15 3-3 BIPV流場模擬設定................................3-17 3-3-1 單元空間之流場模擬 .......................3-17 3-3-2 格點系統設定............................3-24 3-3-3 鬆弛係數與收斂條件設定...................3-26 3-4 BIPV構造數值模擬與實驗比對......................3-28 3-4-1 實驗裝置系統...........................3-28 3-4-2 單元模擬設定...........................3-30 3-4-3 實驗與數值模擬比對......................3-31 第四章 Ventilated BIPV屋頂節能與通風效益分析..............4-1 4-1 BIPV屋頂數值模擬結果............................4-1 4-1-1 氣流場分析...............................4-1 4-1-2 溫度場分析...............................4-2 4-2 BIPV 屋頂之熱移除率.............................4-3 4-3 BIPV 屋頂之節能效益分析..........................4-3 4-4 通風效益........................................4-5 4-5 小結...........................................4-6 第五章 Ventilated BIPV外牆節能與通風效益分析..............5-1 5-1 BIPV外牆數值模擬結果.............................5-1 5-1-1 氣流場分析................................5-1 5-1-2 溫度場分析................................5-3 5-1-3 BIPV流道內之氣流與溫度關係..................5-5 5-1-4 BIPV構造之CFD數值解析......................5-7 5-2 Ventilated BIPV外牆之熱移除率....................5-10 5-2-1 流道寬度對於熱移除率之影響..................5-10 5-2-2 室內通風口高度對於熱移除率之影響.............5-12 5-2-3 流道寬度及風速對於熱移除率之綜合影響.........5-13 5-3 室內日照熱得(Heat gain)效益之評估................5-14 5-3-1 流道寬度對於室內熱得之影響..................5-14 5-3-2 室內通風口高度對於室內熱得之影響.............5-16 5-3-3 流道寬度及風速對於熱得之綜合影響.............5-17 5-4 Ventilated BIPV之節能效益分析....................5-18 5-4-1 對於室內日照熱得的減少.....................5-18 5-4-2 CO2減量之效益............................5-20 5-5 引致換氣效益....................................5-22 5-5-1 流道寬度對於換氣次數之影響.................5-22 5-5-2 室內通風口高度對於換氣次數之影響............5-24 5-6 小結...........................................5-25 第六章 結論與建議.......................................6-1 6-1 結論...........................................6-1 6-2 後續研究建議....................................6-4 參考文獻.............................................Ref-1 附錄一 數值模擬設定值Q1檔.............................Add-1 附錄二 數值模擬結果..................................Add-9 附錄三 BIPV流道內之氣流與溫度關係.....................Add-27 表 目 錄 表2-1-1 國內通風換氣相關研究(本研究整理).............................2-4 表2-1-2 雙層構造相關研究.................................2-4 表2-2-1 PV 板與建築構造系統結合之形式.....................2-7 表2-2-2 太陽光電板應用於建築外殼之評估項目表.......2-8 表2-4-1 不同使用人數之最小外氣量評估......................2-21 表2-4-2 我國建築技術規則有關機械通風之條文.................2-22 表3-1-1 台灣氣象資料.....................................3-1 表3-1-2 台灣地區各地正午(太陽時)最高瞬時輻射能與平均瞬時輻射能分佈表..3-4 表3-1-3 變因設定分析表...................................3-6 表3-1-4 外牆裝設BIPV之變因設定............................3-9 表3-2-1 近代計算流體力學的發展17............................3-10 表3-2-2 CFD數值解析在建築流場之運用.......................3-11 表3-2-3 不同k-ε紊流模型在預測室內氣流之評比19................3-13 表3-2-4 標準k-ε紊流模型時間平均運動方程式之Sφ說明........3-14 表3-2-5 PHOENICS求解之步驟..............................3-16 表3-3-1 本研究室居室空間模擬組數..........................3-17 表3-3-2 本研究CFD數值模擬之基本假設.......................3-18 表3-3-3 屋頂模式各項邊界設定狀態..........................3-19 表3-3-4 外牆模式各項邊界設定狀態..........................3-19 表3-3-5 BIPV外牆構造導引氣流之設置........................3-20 表3-3-6 各變數所設定之鬆弛係數............................3-26 表3-4-1 雙層屋頂單元實驗與CFD數值模擬各測點溫度值...........3-31 表4-1-1 BIPV屋頂CFD模擬氣流場............................4-1 表4-1-2 BIPV屋頂CFD模擬溫度場............................4-2 表4-2-1 BIPV屋頂之熱移除率計算結果........................4-3 表4-2-2 屋頂之室內熱得計算結果............................4-3 表4-2-3 BIPV屋頂散熱率計算...............................4-4 表4-2-4 BIPV屋頂熱移除性能CO2減量之計算結果................4-4 表4-4-1 屋頂換氣次數ACH之計算結果.........................4-5 表4-5-1 BIPV屋頂通風及節能效益綜合評估.....................4-6 表5-1-1 室外風速0.5m/s之氣流場(通風口高度15cm)............5-1 表5-1-2 流道10cm室外風速0.5m/s之氣流場....................5-2 表5-1-3 室外風速0.5m/s之溫度場(通風口高度15cm)...........5-3 表5-1-4 流道15cm室外風速0.5m/s之風速場....................5-4 表5-1-5 流道5cm內之溫度及氣流數值.........................5-5 表5-1-6 各流道寬度內之溫度及氣流數值.......................5-6 表5-1-7 風速0.5m/s之CFD數值解析結果.......................5-7 表5-1-8 風速1.0m/s之CFD數值解析結果.......................5-8 表5-1-9 風速2.0m/s之CFD數值解析結果.......................5-9 表5-2-1 熱移除率之計算結果...............................5-10 表5-3-1 室內熱得之計算結果...............................5-14 表5-4-1 外牆熱移除性能CO2減量之計算結果...................5-20 表5-4-2 外牆室內熱得CO2減量之計算結果.....................5-21 表5-5-1 外牆換氣次數ACH之計算結果.........................5-22 表5-6-1 BIPV外牆通風及節能綜合評估........................5-25 圖 目 錄 圖1-2-1 研究範圍 ........................................1-4 圖1-4-1 研究流程 ........................................1-7 圖2-1-1 各類自然促進通風的系統設計........................ 2-1 圖2-1-2 建築室內外空氣流動關係示意圖.......................2-2 圖2-1-3 前期研究有關自然通風手法之部位示意圖(本研究整理)....2-3 圖2-2-1 溫度對太陽光電池發電量的影響.......................2-6 圖2-2-2 木結構房屋之屋頂通風..............................2-9 圖2-2-3 木結構房屋之通風模式..............................2-9 圖2-2-4 Solar Chimney(1).............................2-10 圖2-2-5 Solar Chimney(2).............................2-10 圖2-2-6 Solar Chimney(3).............................2-11 圖2-2-7 Solar Chimney(4).............................2-11 圖2-2-8 Solar Chimney(5).............................2-11 圖2-2-9 Solar Chimney(6).............................2-12 圖2-2-10 PV與石牆所形成的Ventilated BIPV ...............2-12 圖2-2-11 Ventilated BIPV的引致通風量與BIPV高度之關係.....2-12 圖2-2-12 (Yang et al, 2000)所探討的Ventilated BIPV系統..2-12 圖2-2-13 (Yun et al, 2007)所分析的Ventilated BIPV示意...2-13 圖2-2-14 (Yun et al, 2007)所指的BIPV透光率..............2-14 圖2-2-15 (Yun et al, 2007)研究結果.....................2-14 圖2-3-1 建築物的熱獲得與熱損失..........................2-15 圖2-3-2 通過外殼構造的太陽輻射熱獲得量...................2-16 圖2-3-3 Trombe Wall 暖房示意圖.........................2-17 圖3-1-1 台灣風速現場二十四時實測資料.....................3-3 圖3-1-2 1998~2006台灣各氣象站一月及七月平均氣溫..........3-3 圖3-1-3 斜屋頂氣流特性..................................3-6 圖3-1-4 教室尺寸與受風關係說明圖.........................3-6 圖3-1-5 雙層屋頂示意圖..................................3-7 圖3-1-6 國內住宅常見之臥室空間案例 .......................3-7 圖3-1-7 間層通風的組織形式..............................3-8 圖3-1-8 通風牆.........................................3-8 圖3-1-9 本研究BIPV外牆之物理特性與構造圖示................3-9 圖3-2-1 CFD數值解析運算流程.............................3-12 圖3-3-1 屋頂單元空間模擬設定............................3-18 圖3-3-2 外牆單元空間模擬設定............................3-18 圖3-3-3 教室模式格點設計...............................3-24 圖3-3-4 居室空間X-Z方向網格系統.........................3-25 圖3-3-5 居室空間X-Y方向網格系統.........................3-25 圖3-3-6 居室空間Y-Z方向網格系統.........................3-25 圖3-3-7 居室空間XYZ三向網格系統.........................3-25 圖3-4-1 雙層縮尺實驗裝置立面圖...........................3-29 圖3-4-2 實驗量測因子與量測儀器位置示意....................3-29 圖3-4-3 CFD數值解析雙層單元模型圖說......................3-30 圖3-4-4 雙層單元CFD數值模擬結果.........................3-31 圖3-4-5 雙層屋頂單元實驗與CFD數值模擬各測點溫度比..........3-32 圖4-4-1 屋頂模式換次次數分析圖...........................4-6 圖5-1-1 流道5cm內之溫度及氣流分佈圖......................5-5 圖5-1-2 各流道寬度內之溫度及氣流分佈圖....................5-6 圖5-2-1 流道寬度對於熱移除率之影響.......................5-11 圖5-2-2 室內通風口高度對於熱移除率之影響..................5-12 圖5-2-3 流道寬度與熱移除率之關係.........................5-13 圖5-2-4 風速與流道寬度及熱移除率之關係....................5-13 圖5-3-1 流道寬度對於室內熱得之影響........................5-15 圖5-3-2 室內開口離地高度與室內熱得之分析圖.................5-16 圖5-3-3 流道寬度與熱得之關係.............................5-17 圖5-3-4 風速與熱移除率及流道寬度之關係.....................5-17 圖5-4-1 BIPV與RC、鋼構外牆比較—流道寬度..................5-18 圖5-4-2 BIPV與RC、鋼構外牆比較—通風口高度................5-19 圖5-5-1 流道寬度與換氣次數之分析圖........................5-23 圖5-5-2 室內通風口高度與換氣次數之分析圖...................5-24

    一、中文文獻
    1.94年度能源統計手冊,經濟部能源局,2005。
    2.太陽光電資訊網,工業技術研究院。
    3.王家珍,多孔性構材應用於雙層立面對室內溫熱環境影響之研究,台灣科技大學建築研究所,碩士論文,2002。
    4.台灣各氣象站氣候資料,http://www.cwb.gov.tw/,中央氣象局,2007。
    5.江哲銘,永續建築導論,建築情報季刊雜誌社,台北,pp.94-99,2004。
    6.江哲銘,建築物理,三民書局ISBN:957-14-2400-5,台北,1997。
    7.吳印浴,混合通風系統對室內通風效益影響之研究—以雙層屋頂搭配排風扇之教室單元,成功大學建築所,碩士論文,2007。
    8.吳照順,單一空間內空氣品質與熱舒適度之研究,中原大學機械系,碩士論文,1996。
    9.巫程宏,不同尺度地下風室系統之預冷效能評估,成功大學建築所,碩士論文,2009。
    10.李希聖編著,空調節能技術,台北縣:財團法人徐氏基金會,1995。
    11.李彥頤,以中央橫軸旋轉窗探討自然通風狀態下通風效率之研究,成功大學建築所,碩士論文,1998。
    12.周伯丞,建築軀殼開口部自然通風效果之研究,成功大學建築所,博士論文,2000。
    13.林沂品,網狀構材開口部對室內自然通風效果之影響,成功大學建築所,碩士論文,2000。
    14.林憲德,建築節約能源設計規範與實例,營建雜誌社,2003。
    15.林憲德、郭柏巖,住宅類建築耗能監測與解析,建築物能源管理技術研討會,經濟部能源會,2003。
    16.林憲德,建築風土與節能設計-亞熱帶氣候的建築外殼節能計畫,詹氏ISBN:957-705-138-3,台北,1997。
    17.邱瓊萱,通風管管頂型式對室內通風效益影響之研究,成功大學建築所,碩士論文,2004。
    18.邱繼哲,建築物及生物成長設施之誘導式通風冷卻設計研究-以雙層外殼內置流動空氣層構造為例,台灣大學生物環境系統工程研究所,碩士論文,2002。
    19.胥直強,「住宅及學校模矩尺度之訂定」,內政部建築研究所,1991。
    20.范綱樑,台灣地區全天空建築直射日射量應用研究-以台北、台中、台南、恆春四地為例,淡江大學建築研究所,碩士論文,2002。
    21.徐偉森,住宅臥室空間自然通風效果之研究,成功大學建築所,碩士論文,1997。
    22.徐豪廷,太陽光電導入建築設計與構造應用之研究-針對構造概念整合及發電效益之實作探討,台灣科技大學建築系,碩士論文,2002。
    23.張世典、溫維謙,台灣電力公司新營區營業處示範性節約能源辦公大樓規劃研究,內政部建築研究所籌備處,1992。
    24.張珮綺,雙層化構造BIPV屋頂構造對室內溫熱環境與通風效益之研究,雲林科技大學工程科技研究所,博士論文,2008。
    25.連憶菁,水平導風百葉開口部對室內自然通風效果影響之研究,成功大學建築所,碩士論文,2003。
    26.陳正玲,垂直導風板對室內自然通風效果影響之研究,成功大學建築所,碩士論文,2005。
    27.陳伯宏,台灣地區畜舍屋頂構法應用空氣層隔熱效果研究,台灣大學農業工程研究所,碩士論文,2001。
    28.陳育賢,外氣對BIPV熱效應影響之觀測,立德管理學院資源環境研究所,碩士論文,2007。
    29.陳念祖,建築開口部裝設導風板對自然通風之效益,成功大學建築所,博士論文,2007。
    30.陳念祖,高架地板置換式自然通風對室內通風效率之影響,成功大學建築所,碩士論文,2000。
    31.陳啟中,建築物理概論,詹氏ISBN:957-705-223-1,台北,2000。
    32.喻肇青,國民住宅建築計畫準則研究,內政部建築研究所籌備處,1992。
    33.游立偉,建築物雙層通風屋頂之隔熱性能研究-以平屋頂構造為例,台北科技大學建築與都市設計研究所,碩士論文,2004。
    34.黃士瑞,誘導式自然通風空間中不同粒徑顆粒物質之室內外關係 ,2003。
    35.黃大維,整合型建築節能外殼構造之氣流模擬成效分析研究,淡江大學建築學系,碩士論文,2003。
    36.黃裕益,自然通風溫室之微氣候調節,設施栽培自動化專輯,2001。
    37.黃鈺純,雙層屋頂搭配太子樓構造對室內自然通風效果影響之研究—以國民小學教室單元為例,成功大學建築所,碩士論文,2006。
    38.葉歆,建築熱環境,淑馨ISBN:957-531-573-1,台北,1997。
    39.劉安平譯,光伏電池在建築物上之應用–建築師與工程師的設計手冊,國際能源總署,科技圖書股份有限公司,台北市,pp. 115~148,2003。
    40.賴啟銘、江哲銘,內含RBS之雙層斜屋頂構造原型開發與節能效益分析,國科會專題研究計畫成果報告,2005。

    二、英文文獻
    1.Aboulnaga, M.M, A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: energy conservation approach in AL-AIN city, PII:S0960-1481,1998.
    2.Afonso, C. and Oliveira, A, Solar chimneys:simulation and experiment, Energy and Buildings 32, 71-79 ,2000.
    3.Anderson B., Solar building architecture, MIT. ISBN:0-263-01111-5, 1990.
    4.ASHRAE, Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE Standard 55, 2004.
    5.ASHRAE, Ventilation for Acceptable Indoor Air Quality, ANSI/ASHRAE Standard 62.1, 2004.
    6.Bansal, N.K., Mathur, R. and Bhandari M.S., Solar chimney for enhanced stack ventilation, Building and Environment; 28:373-377, 1993.
    7.Benemann J., Chehab O., Schaar-Gabriel E., Building-integrated PV modules, Solar Energy Materials & Solar Cells 67, p345-p354, 2001.
    8.Bradshaw V., Building Control Systems, Wiley & Sons, Ltd, 1993.
    9.Brinkworth B.J., Cross B.M., Marshall R.H., Yang H., Thermal Regulation of Photovoltaic Cladding, Solar Enegy 61(3), p169-p178, 1997.
    10.Çengel, Y.A., Heat Transfer: A Practical Approach, second edition, New York: McGraw-Hill Companies, Inc, 2003.
    11.Chen, Q. and Jiang, Z., Significant questions in predicting room air motion, ASHRAE Trans. 98(1):929-939, 1992.
    12.Chen, Q., Comparison of Different k-e Models for Indoor Air Flow, Numerical Heat Transfer, Part B, 28:353-369, 1995.
    13.Chen, Z.D, Bandopadhayay, P, Halldorsson, J, Byrjalsen, C, Heiselberg, P, Li, Y., An experimental investigation of a solar chimney model with uniform wall heat flux, Building and Environment 38, 893-906, 2003.
    14.CMHC,2001,加拿大木結構房屋構造。
    15.Dascalaki, E., Santamouris, M., Asimakopoulos, D.N., On the use of deterministic and intelligent techniques to predict the air velocity distribution on external openings in single-sided natural ventilation configurations, Solar Energy, Vol.66:223-243, 1999.
    16.DSG, Planning and installing photovoltaic systems: a guide for installers, architects, and engineers, James & James Ltd., UK: London, 2005.
    17.Duffie J. A., Beckman W. A., Solar engineering of thermal processes, John Wiley & Sons, Ltd. ISBN:0-471-05066-0, 1980.
    18.Etheridge, D. and Sandberg, M., Building Ventilation: Theory and Measurement, John Wiley & Sons, pp. 5-6, 1996.
    19.Fanger, P.O. and Christensen, N.K., Prediction of draft. ASHRAE Journal, Vol. 29, No. 1, pp.30-31, 1987.
    20.Fanger, P.O., A New Chart Identifies the Percentage of Subjects Cissatisfied due to Craft as a Function of the Mean Air and the Air Temperature, ASHRAE JOURNAL January, 1987.
    21.Fanger, P.O., Ventilation for buildings-Design criteria for the indoor environment, CEN, 1998.
    22.Favarolo, P.A. and Manz, H., Temperature-driven single-sided ventilation through a large rectangular opening, Building and Environment, Vol.40:689-699, 2005.
    23.Fordham, M., Natural ventilation, Renewable Energy 19:17-37, 2000.
    24.Gagge, A.P., Fobelets, A.P., Berglund, P.E., A standard predictive index of human response to the thermal environment. ASHRAE Trans., 92, 709-731, 1986.
    25.Gan, G., Effective depth of fresh air distribution in rooms with single-sided natural ventilation, Energy and Buildings, Vol.31:65-73, 2000.
    26.Hirunlabh, J., Kongduang, W., Namprakai, P. and Khedari, J., Study of natural ventilation of houses by a metallic solar wall under tropical climate, Renewable Energy 18 109-119, 1999.
    27.Incropera F. P., Dewitt D. P., Fundamenttals of heat and mass transfer, John Wiley & Sons, Ltd. ISBN:0-471-30460-3, 1996.
    28.Jia, Q.X., Zhao, R.Y. et al., Features of Natural and Artificial Air Movement Roomvent, 2000.
    29.Jiang, Y., Alexander D. et al., Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large-eddy simulation, Journal of Wind Engineering and Industrial Aerodynamics, 91:331-353, 2003.
    30.Jiang.H.et al, A solar cooling project for hot and humid climates, Solar Energy, 71(2), p135- p145,2001。
    31.Khedari .J.et al, Field measurements of performance of roof solar collector, Energy and Buildings,31(3),p171-p178,2000。
    32.Khedari .J.et al, Ventilation impact of a solar chimney on indoor temperature fluctuation and air change in a school building, Energy and Buildings,32,p89-p93, 2000。
    33.Koon J.L.et al, Energy Savings with use of Double Sidewall Curtains on Broiler Houses, Transactions of the ASAE, 36(6), 1993。
    34.Lin, Y.P., Chiang, C.M., Chen, N.T., Li, Y.Y., Chou, P.C., The influence of porous screens on natural ventilation in a dwelling unit, Proceedings of Indoor Air 2005, pp.3137-3141, 2005.
    35.Messenger, Roger and Jerry Ventre, Photovoltaic Systems Engineering, CRC Press LCC, Boca Raton Raton, Florida, 2000.
    36.Mistriotis, A. et al., Computational Analysis of Ventilation in Greenhouses at Zero- and Low-Wind-Speeds, Agricultural and Forest meteorology,88(1-4):121-135, 1997.
    37.Nelson, R.M. and Pletcher, R.H., An Explicit Scheme for the Calculation of Confined Turbulent Flow with Heat Transfer, Proc. 1974 Heat Transfer and Fluid Mechanics Institute, Standford University Press, Standford, California, pp. 154-170, 1974.
    38.Nielsen P.V., CFD Models of Persons Evaluated by Full-Scale wind Channel Experiments, ROOMVENT ’96, Nagoya Japan, 1996.
    39.Olesen, B.W., Guildelines for Comfort, ASHRAE Journal, August, 2000.
    40.Olgyay, V., Design with Climate, Van Nostrand Reinhold, 1993.
    41.Ong, K.S, A mathematical model of a solar chimney, Renewable Energy 28, 1047-1060, 2003.
    42.Peter, W. and Grieve, M., Measuring Ventilation Using Tracer-Gases, Brüel & Kjær, 1991.
    43.Phillips, J. et al., Numerical Study of Convective and Radiative Heat Transfer from Window Glazing with a Venetian Blind, ASHARE Transaction: Symposia, 2001.
    44.Posner, J.D., Measurement and prediction of indoor air flow in a model room, Energy and Building, 35:515-526, 2003.
    45.Prasad D. and Snow M. et al., Designing with Solar Power: a Source Book for Building Integrated Photovoltaics, the Images Publishing Group Pty Ltd and Earthscan, p50-p52, 2005.
    46.Roger M. and Ventre J., Photovoltaic Systems Engineering, the CRC Press LLC, p45-p46, 2000.
    47.Sandberg, M. and Moshfegh, B., Ventilated-solar roof airflow and heat transfer investigation, Renewable Energy 15, 287-292, 1998.
    48.Schunck, Oster, Barthel, Roof Construction Manual-Pitched Roofs, Edition DETAIL, 2006。
    49.Seifert, J., Li, Y., Axley, J., Rösler, M., Calculation of wind-driven cross ventilation in buildings with large openings, Journal of Wind Engineering and Industrial Aerodynamics 94:925-947, 2006.
    50.Speziale, C.G., Gatski, T.B., Fitzmaurice, N., An analysis of RNG-based turbulence models for homogeneous shear flow, Physics of Fluids 3(9):2278-2281, 1991.
    51.Stoecker W. F., Jones J. W., Refrigeration and air conditioning, McGraw-Hill, 1982.
    52.Straw, M.P., Baker, C.J., Robertson, A.P., Experimental measurements and computations of the wind-induced ventilation of a cubic structure, Journal of Wind Engineering and Industrial Aerodynamics 88, pp. 213-230, 2000.
    53.Susanti LUSI,M.Eng.et al, Experimental Study On Natural Ventilation Effect Of A Cavity In An Inclined Double Roof, SB2005 Conference, 2005。
    54.Tanaja H.et al, Thermal characteristics of a hoop structure for swine production, American Society of Agricultural Engineers, 40(4), 1171-1177, 1997。
    55.Tham, K.W., Willem, H.C., Sekhar, S.C., Wyon, D.P., Wargocki, P., Fanger, P.O., Temperature and ventilation effects on the work performance of office workers (study of a call center in the tropics). Proceedings of Healthy Buildings 2003, Vol. 3, Singapore, Stallion Press, 280-286, 2003.
    56.Yakhot, V. and Orzag, S.A., Renormalization group analysis of turbulence: I. Basic theory, Journal of Scientific Computing 13, 1986.
    57.Yang H., Burnett J. and Ji J., Simple approach to cooling load component calculation through PV walls, Energy and Buildings 31, 285-290, 2000.
    58.Yates T. A., Solar Cells in Concentrating Systems and Their High Temperature Limitations, A Bachelor Thesis, the University of California at Santa Cruz, 2003.
    59.Yilmaz, M., The effect of inlet flow baffles on heat transfer, Int. Comm. Heat Mass Transfer, Vol.30:1169-1178, 2003.
    60.Yun G.Y., McEvoy M., Steemers K., Design and Overall Energy Performance of a Ventilated Photovoltaic Façade, Solar Energy 81, p383-p394, 2007.

    下載圖示 校內:立即公開
    校外:2012-07-12公開
    QR CODE