簡易檢索 / 詳目顯示

研究生: 林婉琪
Lin, Wan-Chi
論文名稱: 探討外送突變型p53於膀胱癌細胞株TCCSUP中增強對抗癌藥物cisplatin敏感性之機制
The mechanism of the exogenous mutant p53 enhanced cisplatin-induced apoptosis in the bladder cancer cell line TCCSUP
指導教授: 賴明德
Lai, Ming-Derg
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 88
中文關鍵詞: 膀胱移形上皮細胞癌順-雙氨雙氯鉑突變型p53
外文關鍵詞: mutant p53, bladder cancer cell line TCCSUP, cisplatin
相關次數: 點閱:99下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    p53的狀態與腫瘤細胞對抗癌藥物敏感度之關連性似乎遠比想像的複雜。Cote et al.曾於臨床上觀察膀胱癌患者,其腫瘤未含突變型p53者,化療效果並不因此而對其生存年限有所助益;相對來說,在腫瘤帶有突變型p53之患者經化學治療後,能提高2.6倍的生存年數。
    因此我們實驗室將各種形式的突變型p53 (V143A、V173L、H179Q、N247I以及R273H)送入膀胱癌細胞-TCCSUP中,建立持續表現的轉染細胞株,並以抗癌藥物cisplatin處理。發現除了其中之一的突變型p53的轉染細胞株TCCSUP-273之外,其餘TCCSUP-143、TCCSUP-173、TCCSUP-179與TCCSUP-247四種細胞株均較於原本的TCCSUP細胞,對藥物有較高的敏感性。並證實cisplatin是以細胞凋亡(apoptosis)作用造成細胞死亡。
    而p53可透過三種模式來執行其功能:(1)轉錄作用而促進目標基因(如:PIDD、p53R2、NOXA等)表現(2)轉錄作用而抑制目標基因(如:survivin、cyclin B2等)表現(3)蛋白質之間的交互作用,如調控Fas的移動或p53本身的移動。本研究即依其三種模式,一一檢驗突變型p53可能作用的機制。
    利用semiquantitative RT-PCR去檢驗三個能被p53啟動而轉錄的基因:PIDD、p53R2及NOXA,觀察在突變型p53的轉染細胞株中這些基因的表現。實驗結果顯示,p53R2及NOXA這兩個基因在TCCSUP、TCCSUP-143、TCCSUP-247及TCCSUP-273中表現情況均為相似;而PIDD基因,相較於TCCSUP-143、TCCSUP-247及TCCSUP-273,在TCCSUP細胞中則有明顯被誘導表現的情況,配合實驗室過去曾以轉錄作用抑制劑actinomycin D先行處理再觀察這些細胞對cisplatin高敏感性的現象是否消失,但結果顯示,這樣的作法並不影響TCCSUP-143、TCCSUP-247容易死亡的現象。故p53可能並非是藉由轉錄作用而促進目標基因的方式來執行其功能。
    兩個可能影響p53抑制基因功能的histone deacetylases (HDACs) inhibitor:trichostatin A (TSA)及nicotinamide (NA)被用來檢驗是否能使突變型p53造成高敏感的現象消失。Trichostatin A的處理同時加強了細胞的TCCSUP或TCCSUP-143的死亡,因此突變型p53的轉染細胞株對cisplatin高敏感性的現象仍然存在。而nicotinamide的處理,不影響TCCSUP卻使TCCSUP-143的存活情形有部分回升的現象,使TCCSUP-143對藥物的敏感性變得與TCCSUP接近。然而以Semi-quantitative RT-PCR分析兩個能被p53抑制的基因:survivin及cyclin B2其表現在四種細胞中相似,均呈現被抑制的情形。這些結果顯示p53可能藉由其它抑制的基因或是nicotinamide的處理影響了細胞凋亡進行過程中的蛋白質間交互作用的作用而產生敏感度改變的現象。
    使用專門辨識N端epitope的抗體,可觀察到cisplatin處理後,bak蛋白質N端會發生構形改變但bax蛋白質則無此現象,且敏感度高的細胞株(TCCSUP-143 and TCCSUP-247)具較明顯之構形變化。以粒線體染劑JC-1偵測藥物處理後膜電位的變化,在敏感度高的細胞中可觀察到粒線體膜電位下降的情形。除此之外,處理nicotinamide不但能減緩bak蛋白質N端構形改變的情況,亦能阻止膜電位的下降。如此的結果暗示bak蛋白質N端構形改變可能在突變型p53誘發細胞凋亡中扮演角色。
    在本研究中,我們認為突變型p53可能藉由bak蛋白質N端構形改變,而啟動粒線體細胞凋亡之機制,使得外送突變型p53於膀胱癌細胞株TCCSUP對抗癌藥物cisplatin產生高敏感性的現象。

    Abstract
    The relationship between the status of p53 and the sensitivity of tumors to anticancer treatment is somewhat complex. Cote et al. reported that in patients with bladder tumors that did not demonstrate p53 alterations, adjuvant chemotherapy conferred no survival benefit. In contrast, in patients with p53-altered tumor, adjuvant chemotherapy resulted in 2.6 fold-increased chance of surviving.

    Our lab delivered several mutant p53 (V143A, V173L, H179Q, N247I and R273H) into bladder cancer cell line-TCCSUP, and studied the response to anticancer drug-cisplatin (CDDP) in these transfectants. All forms of mutant p53 except p53-R273H enhanced sensitivity to this drug. The sensitivity of p53-R273H transfectant was similar to that of parental TCCSUP. And cisplatin induced cell death through apoptosis.

    p53 can exert its function through three possible pathways: (1) transcriptional activation of downstream target genes: PIDD, p53R2; NOXA et al.; (2) transcriptional repression of downstream target genes; survivin, cyclin B2 et al.; (3) protein-protein interaction, such as surface trafficking of Fas or localization of p53. We investigated the possibility of three pathways in this research.

    The expression of p53 target genes, p53R2 and NOXA, had similar patterns in parental cell and mutant p53 transfectants. Another gene, PIDD, was induced in parental cell more than transfectants. Consistent with our previous research, addition of transcriptional inhibitor, actinomycin D, did not prohibit the cell from cisplatin-induced apoptosis. These results indicated that enhanced-apoptosis by mutant p53 was unlikely to mediate through transcriptional activation.

    Histone deacetylases (HDACs) inhibitor, trichostatin A (TSA), and nicotinamide (NA), were assayed to reverse the mutant-p53 induced apoptosis. Treatment cell with trichostatin A and cisplatin enhanced the cisplatin-induced apoptosis whether in TCCSUP or TCCSUP-143. Treatment of cells with nicotinamide and cisplatin recovered cisplatin-induced apoptosis in TCCSUP-143. This treatment rendered sensitivity of TCCSUP-143 close to parental cell TCCSUP. Semi-quantitative RT-PCR was used to analyze the expression of p53 down-regulation genes, survivin, cyclin B2. However, both of two genes still showed the similar patter in these four cell lines. These results suggest that other p53-target genes or direct protein-protein interaction influence apoptotic process.

    With conformation-specific antibody, we observed the N-terminal conformation change of bak but not bax in all cell lines. Significant conformation change was observed in TCCSUP-143 and TCCSUP-247, which were more sensitive to cisplatin. A mitochondrial potential sensors “JC-1” was used to measure the mitochondrial membrane potential. The membrane potential decreased in TCCSUP-143 and TCCSUP-247. Treatment with histone deacetylase inhibitor nicotinamide not only reduced level of conformation change, but also restored the membrane potential in TCCSUP-143. It indicates the conformation change may play a role in the mechanism of mutant p53 enhanced cisplatin-induced apoptosis.

    In conclusion, apoptosis may be induced through the N-terminal conformation change of bak and then undergoes the mitochondrial pathway. It is one of mechanisms that mutant p53 enhanced cisplatin-induced apoptosis in the bladder cancer cell line TCCSUP.

    目錄 緒言 1 一、膀胱癌概論 1 二、腫瘤抑制基因—p53 3 三、突變型p53與化療抗藥性的關連性 6 材料與方法 9 一、細胞培養 9 二、藥物毒殺細胞存活率計算--MTT assay 12 三、抽取total RNA 13 四、反轉錄聚合脢連鎖反應 15 五、免疫螢光染色法 16 六、粒線體膜電位測定 18 七、蛋白質構形變化分析 19 八、免疫沈澱法 21 九、西方點墨法 23 結果 30 一、各個細胞株對抗癌藥物cisplatin的敏感性 30 二、cisplatin處理後p53經轉錄而活化基因表現的訊息傳導 30 三、cisplatin處理後p53經轉錄而抑制基因表現的訊息傳導 31 四、cisplatin處理後p53經非轉錄作用而產生的訊息傳導 32 五、抑制物nicotinamide對p53訊息傳導過程的影響 35 討論 37 一、p53經轉錄作用而引發之訊息傳導 37 二、p53經非轉錄作用而引發之訊息傳導 39 三、為何突變型p53會增強對cisplatin的敏感性 43 結論 46 參考文獻 47 表 56 圖 58 附錄 86

    參考文獻
    Adams, J. M., and S. Cory, 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
    Attardi, L. D., E. E. Reczek, C. Cosmas, E. G. Demicco, M. E. McCurrach, S. W. Lowe and T. Jacks, 2000. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704-708.
    Bennett, M., K. MacDonald, S.-W. Chan, J. P. Luzio, R. Simari and P. Weissberg, 1998. Cell surface trafficking of Fas: a rapid mechanism of p53 mediated apoptosis. Science 282, 290-293.
    Boldin, M. P., T. M. Goncharov, Y. V. Goltseve and D. Wallach, 1996. Involvement of MACH, a Novel MORT1/FADD-Interacting Protease, in Fas/APO-1- and TNF Receptor–Induced Cell Death. Cell 85, 803-815.
    Brown, J. M., and B. G. Wouters, 1999. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 59, 1391-1399.
    Bunz, F., P. M. Hwang, C. Torrance, T. Waldman, Y. Zhang, L. Dillehay, J. Williams, C. Lengauer, K. Kinzler and B. Vogelstein, 1999. J. Clin. Invest. 104, 263-269.
    Caelles, C., A. Helmberg and M. Karin, 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370, 220-223.
    Ceraline, J., G. Deplanque, B. Duclos, J. M. Limacher, A. Hajri, F. Noel, C. Orvain, T. Frebourg, C. Klein-Sover and J. P. Bergerat, 1998. Inactivation of p53 in normal human cells increases G2/M arrest and sensitivity to DNA-damaging agents. Int. J. Cancer 75, 432-438.
    Chan, T. A., P. M. Hwang, H. Hermeking, K. W. Kinzler and B. Vogelstein, 2000. Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev. 14, 1584-1588.
    Chang, F. L., 2002. The role of p53 in the apoptosis induced by anticancer drugs in bladder cancer cells. Ph. D. Thesis
    Chang, F. L., and M. D. Lai, 2001. Various forms of mutant p53 confer sensitivity to cisplatin and doxorubicin in bladder cancer cells. J. Urol. 166, 304-310.
    Chen, Y., P. L. Chen and W. H. Lee, 1994. Hot-spot p53 mutants interact specifically with two cellular proteins during progression of the cell cycle. Mol Cell Biol. 14, 6764-6772.
    Chene, P., and E. Bechter, 1999. Cellular characterization of p53 mutants with a single missense mutation in the beta-strand 326-333 and correlation of their activities with in vitro properties. J. Mol. Biol. 288, 891-897.
    Chin, K. V., K. Ueda, I. Pastan and M. M. Gottesman, 1992. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255, 459-462.
    Cho, Y., S. Gorina, P. D. Jeffrey and N. P. Pavletich, 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346-355.
    Cordon-Cardo, C., 1995. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am. J. Pathol. 147, 545-560.
    Cordon-Cardo, C., Z. F. Zhang, G. Dalbagni, M. Drobnjak, E. Charytonowicz, S. X. Hu, H. J. Xu, V. E. Reuter and W. F. Benedict, 1997. Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Res. 57, 1217-1221.
    Cote, R. J., D. Esrig, S Groshen, P. A. Jones and D. G. Skinner, 1997. p53 and treatment of bladder cancer. Nature 385, 123-125.
    Cote, R. J., M. D. Dunn, S. J. Chatterjee, J. P. Stein, S. R. Shi, Q. C. Tran, S. X. Hu, H. J. Xu, S. Groshen, C. R. Taylor, D. G. Skinner and W. F. Benedict, 1998. Elevated and absent pRB expression is associated with bladder cancer progression and has cooperative effects with p53. Cancer Res. 58, 1090-1094.
    Deb, S. P., R. M. Munoz, D. R. Brown, M. A. Subler and S. Deb, 1994. Wild-type human p53 activates the human epidermal growth factor promoter. Oncogene 9, 1341-1349.
    Desagher, S., A. Osen-Sand, A. Nichols, R. Eskes, S. Montessuit, S. Lauper, K. Maundrell, B. Antonsson and J. C. Martinou, 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891-901.
    Dittmer, D, S. Pati, G. Zambetti, S. Chu, A. K. Teresky, M. Moore, C. Finlay and A. J. Levine, 1993. Gain of function mutations in p53. Nat. Genet. 4, 42-46.
    Donehower, L. A., M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Jr. Montgomery, J. S. Butel and A. Bradley, 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356, 215-221.
    Erber, R., C. Conradt, N. Homann, C. Enders, M. Finck, A. Dietz, H. Weidauer and F. X. Bosch, 1998. TP53 DNA contact mutation are selective associated with allelic loss and have a strong clinical impact in head and neck cancer. Oncogene 16, 1671-1679.
    Esrig, D., C. H. Spruck, P. W. Nichols, B. Chaiwun, K. Steven, S. Groshen, S. C. Chen, D. G. Skinner, P. A. Jones and R. J. Cote, 1993. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am. J. Pathol. 143:1389-1397.
    Frazier, M. W., X. He, J. Wang, Z. Gu, J. L. Clevel and G. P. Zambetti, 1998. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol. 18, 3735-3743.
    Gallagher, W. M., M. Argentini, V. Sierra, L. Bracco, L. Debussche and E. Conseiller, 1999. MBP1: a novel mutant p53-specific protein partner with oncogenic properties. Oncogene 18, 3608-3616.
    Graeber, T. G., C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch, S. W. Lowe and A. J. Giaccia, 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88-91.
    Griffiths, G. J., B. M. Corfe, P. Savory, S. Leech, M. D. Esposti, J. A. Hickman and C. Dive, 2001. Cellular damage signals promote sequential changes at the N-terminus and BH-1 domain of the pro-apoptotic protein Bak. Oncogene 20, 7668-7676.
    Griffiths, G. J., L. Dubrez, C. P. Morgan, N. A. Jones, J. whitehouse, B. M. Corfe, C. Dive and J. A. Hickman, 1999. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 144, 903-914.
    Gross, A., K. Pilcher, E. Blachly-Dyson, E. Basso, J. Jockel, M. C. Bassi, S. J. Korsmeyer and M. Forte, 2000. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-XL. Mol. Cell Biol. 20, 3125-3316.
    Guarente, L., 2000. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14, 1021–1026.
    Haupt, Y, S. Rowan, E. Shaulian, K. H. Vousden and M. Oren, 1995. Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9, 2170-2183.
    Hollstein, M. C., K. Rice, M. S. Greenblatt, T. Soussi, R. Fuchs, T. Sorlie, E. Hovig, B. Montesano and C. C. Harris, 1994. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22, 3551-3555.
    Jacks, T., L. Remington, B. O. Williams, E. M. Schmitt, S. Halachmi, R. T. Bronson and R. A. Weinberg, 1994. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 4, 1-7.
    Jason A. B., and G. Li, 2002. Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int. J. Cancer, 98, 323-330.
    Kakehi, Y., E. Ozdemir, T. Habuchi, H. Yamabe, T. Hashimura, Y. Katsura and O. Yoshida, 1998. Absence of p53 overexpression and favorite response to cisplatin-based neoadjuvant chemotherapy in urothelial carcinomas. Jpn. J. Cancer Res. 89, 214-220.
    Kaneuchi, M., T. Yamashita, M. Shindoh, K. Segawa, S. Takahashi, I. Furuta, S. Fujimoto and K. Fujinaga, 1999. Induction of apoptosis by the p53-273L (Arg --> Leu) mutant in HSC3 cells without transactivation of p21Waf1/Cip1/Sdi1 and bax. Mol. Carcinog. 26, 44-52.
    Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein and R. W. Craig, 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304-6311.
    Khan, Q. A., K. H. Vousden and A. Dipple, 1997. Cellular response to DNA damage from a potent carcinogen involves stabilization of p53 without induction of p21(waf1/cip1). Carcinogenesis 12, 2313-2318.
    Koumenis, C., R. Alarcon, E. Hammond, P. Sutphin, W. Hoffman, M. Murphy, J. Derr, Y. Lowe, S. W. Kastan and A. Giaccia. 2001. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol. 21, 1297-1310.
    Landry, J., A. Sutton, S. T. Tafrov, R. C. Heller, J. Stebbins, L. Pillus and R. Sternglanz, 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807–5811.
    Lanyi, A., D. Deb, R. C. Seymour, J. H. Ludes-Meyers, M. A. Subler and S. Deb. 1998. ‘Gain of function’ phenotype of tumor-derived mutant p53 requires the oligomerization / nonsequence-specific nucleic acid-binding domain. Oncogene 16, 3169-3176.
    Levine, A. J., 1997. p53, the cellular gatekeeper for growth and division. Cell 88, 323-331.
    Li, R., P. D. Sutphin, D. Schwartz, D. Matas, N. Almog, R. Wolkowicz, N. Goldfinger, H. Pei, M. Prokocimer and V. Rotter, 1998. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 16, 3269-3277.
    Lin, Y., W. Ma and S. Benchimol, 2000. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat. Genet. 26, 124-127.
    Locksley, R. M., N. Killeen and M. J. Lenardo, 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501.
    Ludwig, R. L., S. Englert and K. H. Vousden, 1996. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell Biol. 16, 4952-4960.
    Luo, J., A. Y. Nikolaev, S. Imai, D. Chen, F. Su, A. Shiloh, L. Guarente and W. Gu, 2001. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137–148.
    MacLachlan, T. K., and W. S. El-Deiry, 2002. Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc. Natl. Acad. Sci. USA 99, 9242-9247.
    Maheswaran, S., C. Englert, P. Bennett, G. Heinrich and D. A. Haber, 1995. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev. 9, 2143-2156.
    Malkin, D., F. P. Li, L. C. Strong, Jr., J. F. Fraumeni, C. E. Nelson, D. H. Kim, J, Hassel, M. A. Gryka, F. Z. Bischoff, M. A. Tainsky and S. H. Friend, 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233-1238.
    Mancini M., B. O. Anderson, E. Caldwell, M. Sedghinasab, P. B. Paty and D. M. Hockenbery, 1997. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J. Cell Biol. 138, 449-469
    Mandic A, K. Viktorsson, M. Molin, G. Akusjarvi, H. Eguchi, S. I. Hayashi, M. Toi, J. Hansson, S. Linder and M. C. Shoshan, 2001. Cisplatin induces the proapoptotic conformation of Bak in a deltaMEKK1-dependent manner. Mol. Cell Biol. 21, 3684-3691.
    Marchenko, N. D., A. Zaika and U. M. Moll, 2000. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202-16212.
    Miller, S. J., T. Suthiphongchai, G. P. Zambetti and M. E. Ewen, 2000. p53 binds selectively to the 5’ untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor β- and p53-mediated translation inhibition of cdk4. Mol. Cell Biol. 20, 8420-8431.
    Miyashita, T., and J. C. Reed, 1995. Trumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299.
    Moroni, M. C., E. S. Hickman, E. L. Denchi, G. Caprara, E. Colli, F. Cecconi, H. Muller and K. Helin, 2001. Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol. 3, 552-558.
    Murphy, M., J. Ahn, K. K. Walker, W. H. Hoffman, R. M. Evans, A. J. Levine and George, D. L. 1999. Transcriptional repression by wild-type p53 utilizes histone deacetylase, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501.
    Muzio, M., A. M. Chinnaiyan, F. C. Kischkel, K. O’Rourke, A. Shevchenko, J. Ni, C. Scaffidi, J. D. Bretz, M. Zhang, R. Gentz, M. Mann, P. H. Krammer, M. E. Peter and V. M. Dixit, 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Cell 85, 817-827.
    Miyashita, T., S. Krajewski, M. Krajewska, H. G. Wang, H. K. Lin, D. A. Liebermann, B. Hoffman and J. C. Reed, 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799-1805.
    Nakano, K., and K. H. Vousden, 2001. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683-694.
    Nguyen, K. T., B. Liu, K. Ueda, M. M. Gottesman, I. Pastan and K. V. Chin, 1994. Transactivation of the human multdrug resistance (MDR1) gene promoter by p53 mutants. Oncol. Res. 6, 71-77.
    Oda, E., R. Ohki, H. Murasawa, J. Nemoto, T. Shibue, T. Yamashita, T. Tokino, T. Taniguchi and N. Tanaka, 2000a, Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058.
    Oda, K., H. Arakawa, T. Tanaka, K. Matsuda, C. Tanikawa, T. Mori, H, Nishimori, K. Tamai, T. Tokino, Y. Nakamura and Y. Taya, 2000b. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-862.
    Ohnishi, T., X. Wang, k. Ohnishi, H. Matsumoto and A. Takahashi, p53-dependent induction of WAF1 by heat treatment in human glioblastoma cells. 1996. J. Biol. Chem. 271, 14510-14513.
    Orlow, I., L. Lacombe, G. J. Hannon, M. Serrano, I. Pellicer, G. Dalbegni, V. E. Reuter, Z. F. Zhang, D. Beach and C. Cordon-Cardo, 1995. Deletion of p16 and p15 genes in human bladder tumors. J. Natl. Cancer Inst. 87, 1524-1529
    Owen-Schaub, L. B., W. Zhang, J. C. Cusack, L. S. Angelo, S. M. Santee, T. Fujiara, J. A. Roth, A. B. Deisseroth, W. W. Zhang, E. Kruzel and R. Radinsky, 1995. Wild-type human p53 and a temperate-sensitive mutant induce Fas/APO-1 expression. Mol. Cell Biol. 15, 3032-3040.
    Piacentini, M, M. G. Farrace, L. Piredda, P. Matarrese, F. Ciccosanti, L. Falasca, C. Rodolfo, A. M. Giammarioli, E. Verderio, M. Griffin and W. Malorni, 2002. Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J. Neurochem. 81, 1061-1072.
    Raffo, A. J., A. L. Kim and R. L. Fine, 2000. Formation of nuclear Bax/p53 complexes is associated with chemotherapy induced apoptosis. Oncogene 19, 6216-6228.
    Sabbatini, P., S. K. Chiou, L. Rao and E. White, 1994. Modulation of p53-mediated transcriptional repression and apoptosis by the adenovirus E1B 19K protein. Mol. Cell Biol. 15, 1060-1070.
    Sakamuro, D., P. Sabbatini, E. White and G. C. Prendergast, 1997. The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15, 887-898.
    Saller, E., E. Tom, M. Brunori, M. Otter, A. Estreicher, D. H. Mack and R. Iggo, 1999. Increased apoptosis induction by 121F mutant p53. EMBO J. 18, 4424-4437
    Salvesen, G. S., and V. M. Dixit, 1999. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96, 10964–10967.
    Sampath, J., D. Sun, V. J. Kidd, J. Grenet, A. Gandhi, L. H. Shapiro, Q. Wang, G. P. Zambetti and J. D. Schuetz, 2001. Mutant p53 cooperates with ETS and selectively upregulates human MDR1 not MRP1. J. Biol. Chem. 276, 39359-39367.
    Sarkis, A. S., D. F. Bajorin, V. E. Reuter, H. W. Herr, G, Netto, Z. F. Zhang, P. K. Schultz, C. Cordon-Cardo and H. I. Scher, 1995. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol. 13, 1284-1290.
    Selivanova, G., L. Ryabchenko, E. Jansson, V. Iotsova and K. G. Wiman, 1999. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell Biol. 19, 3395-3402.
    Slaton, J. W., W. F. Benedict and C. P. Dinney, 2001. p53 in bladder cancer: mechanism of action, prognostic value, and target for therapy. Urology 57, 852-859.
    Spruck, C. H., P. F. Ohneseit, M. Gonzalez-Zulueta, D. Esrig, N. Miyao, Y. C. Tsai, S. P. Lerner, C. Schmutte, A. S. Yang, R. Cote, et al., 1994. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 54, 784-788.
    Strauss, B. E., and M. Haas, 1995. The region 3’ to the major transcriptional start site of the MDR1 downstream promoter mediates activation by a set of mutant p53 proteins. Biochem. Biophys. Res. Commun. 217, 333-340.
    Tanaka, H., H. Arakawa, T. Yamaguchi, K. Shiraishi, S. Fukuda, K. Matsui, Y. Takei and Y. Nakamura, 2000. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42-49.
    Tanner, K. G., J. Landry, R. Sternglanz and J. M. Denu, 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. USA 97, 14178–14182.
    Tanny, J. C., and D. Moazed, 2001. Coupling of histone deacetylationto NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an Nas. D breakdown product. Proc. Natl. Acad. Sci. USA 98, 415–420.
    Vander-Heiden M. G., N. S. Chandel, E. K. Williamson, P. T. Schumacker and C. B. Thompson, 1997. BCL-XL regulate the membrane potential and volume homeostasis of mitochondria. Cell 91, 627-637.
    Vaziri, H., S. K. Dessain, E. N., Eaton, S. I. Imai, R. A. Frye, T. K. Pandita, L. Guarente and R. A. Weinberg, 2001. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell Line. Cell 107, 149–159.
    Vogelstein, B., and K. W. Kinzler, 1992. p53 function and dysfunction. Cell 70, 523-526.
    Wieczorek, A. M., J. L. Waterman, M. J. Waterman and T. D. Halazonetis, 1996. Structure-based rescue of common tumor-derived p53 mutants. Nat. Med. 10, 1143-1146.
    Wong, K. B., B. S. DeDecker, S. M. V. Freund, M. R. Proctor, M. Bycroft and A. R. Fersht, 1999. Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc. Natl. Acad. Sci. USA 96, 8348–8442.
    Wu, G. S., T. F. Burns, E. R. McDonald Ⅲ, W. Jiang, R. Meng, I. D. Krantz, G. Kao, D. D. Gan, J. Y. Zhou, R. Mushel, S. R. Hamilton, N. B. Spinner, S. Markowitz, G. Wu and W. S. El-Deiry, 1997. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17, 141-143.
    Yang, X., A. Patar and S. C. Tang, 1999. Cloning and characterization of the human BAG-1gene promoter: upregulation by tumor-derived p53 mutants. Oncogene 18, 1177-1184.
    Yoshida, M., M. Kijimia, M. Akita and T. Beppu. 1990. Potent and specific inhibition of histone deacetylase both in vitro and in vivo by trichostatin A. J. Biol. Chem. 265, 17174–17179.
    Yu, J., L. Zhang, P. M. Hwang, K. W. Kinzler and B. Vogelstein, 2001. PUMA induces the rapid apoptosis of colorectal cancer cell. Mol. Cell 7, 673-682.
    Zamble, D. B., T. Jacks and S. J. Lippard, 1998. p53-Dependent and -independent responses to cisplatin mouse testicular teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 95, 6163–6168.
    Zhang, X., L. Jin and Takenaka, I. 1998. Movement of Bax from the cytosol to mitochondria during apoptosis. Urology 52, 925-931.

    下載圖示 校內:2004-07-25公開
    校外:2004-07-25公開
    QR CODE