簡易檢索 / 詳目顯示

研究生: 廖世凱
Liao, Shih-Kai
論文名稱: 焚化飛灰製備功能性鈣矽水合材料之研究
Study on the preparation of functional calcium silicate hydrate materials from incineration fly ashes
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 148
中文關鍵詞: 城市固體廢棄物焚化飛灰鈣矽水合物水洗程序冷燒結技術高壓蒸汽養護輕質氣泡混凝土托貝莫來石
外文關鍵詞: Municipal Solid Waste Incineration Fly Ash, Calcium Silicate Hydrate, Washing Process, Cold Sintering Process, Autoclaved Aerated Concrete, Tobermorite
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 城市固體廢棄物焚化飛灰(Municipal Solid Waste Incineration Fly Ash, MSWI FA)是垃圾焚化過程中的副產物,因其富含鈣和矽元素,是製備功能性鈣矽水合材料(Calcium Silicate Hydrate, CSH)的潛在原料。然而,飛灰中的重金屬、氯化物及硫酸鹽等雜質會對CSH的形成過程及其材料性能產生不利影響。因此,如何有效處理飛灰並將其轉化為高附加值材料是當前資源化研究的重要課題。本研究探討焚化飛灰經水熱反應及冷燒結技術(Cold Sintering Process, CSP)處理後的應用與材料特性,以期優化其資源化利用。對於輕質材料的應用,採用水熱反應技術,將經過水洗程序的飛灰(WFA)用於製備高壓蒸汽養護輕質氣泡混凝土(Autoclaved Aerated Concrete, AAC)。通過洗滌飛灰中的氯化物和部分重金屬可被有效去除,提升了材料的純度和反應性。實驗結果顯示,適量添加WFA低於40 wt.%時,可生成穩定的托貝莫來石(tobermorite),顯著提升AAC的壓縮強度達15.98–17.79 MPa。此外,AAC樣本具有低密度、輕質結構的特性,提供優異的隔熱、防火和隔音等性能,適用於建築內牆和屋頂等結構輕量化設計。然而,當WFA添加量超過40 wt.%時,殘餘雜質對tobermorite的形成產生抑制作用,導致材料強度下降。另探討緻密材料的應用於冷燒結技術,是一種低溫高壓的冷燒結技術,聚焦於焚化飛灰在製備高密度陶瓷材料中。通過在300°C以下及312 MPa壓力下進行燒結,飛灰被固化為高密度陶瓷塊,同時顯著降低了重金屬的浸出率(鋅42.37%,鉛21.14%)。實驗顯示,CSP能生成穩定的鈣矽酸鹽相,例如Rankinite與Anorthite,這些相的形成有助於封存飛灰中的污染物並增強其結構穩定性,適用於建材中的堅硬板材及環境工程中的污染控制。這兩種材料的結合提供了多功能應用的新方向。輕質材料在建築隔熱與減輕建物重量中具有優勢,而緻密材料則能滿足強度高、耐用性和污染物固定的需求。未來研究可致力於結合這兩類技術,以開發具有輕質結構與緻密高強度的複合材料,同時擴展其應用於建築、環境工程及能源存儲等領域,實現焚化飛灰資源化的更高價值化利用。

    This study combines hydrothermal reaction and cold sintering process (CSP) to utilize municipal solid waste incinerator fly ash to develop lightweight and high-density calcium silicate hydrate materials. The study found that hydrothermal reaction can effectively use washed fly ash (WFA) to produce lightweight aerated concrete (AAC). At the same time, CSP technology can convert fly ash into high-density ceramic blocks, effectively immobilizing heavy metals.
    Addressed fly ash (WFA) can increase material density and compressive strength regarding AAC production. When the WFA addition is 40 wt%, the compressive strength can reach 15.98–17.79 MPa. Microstructural analysis shows that adding WFA affects porosity and pore size distribution.
    Regarding CSP technology, the optimal conditions are a temperature of 300°C, a pressure of 312 MPa, a time of 60 minutes, a liquid ratio of 25 wt%, and a sodium carbonate addition of 9 wt%. Under these conditions, zinc and lead leaching rates decreased by 42.37% and 21.14%, respectively, meeting the regulatory limits of the Toxicity Characteristic Leaching Procedure (TCLP). SEM observations show that the density of the fly ash block after CSP treatment significantly increased, and the internal structure showed an interwoven pattern.
    This study provides an innovative approach to the resource utilization of fly ash and promotes the development of a circular economy. Future research suggests further optimizing CSP process parameters, conducting life cycle assessments, and exploring the application of such materials in green buildings and pollution control.

    摘 要i Extended Abstractii 誌 謝xi 目 錄xii 表目錄xiv 圖目錄xv 第一章 緒論1 1-1 研究背景 1 1-2 研究目的 3 第二章 文獻回顧5 2-1 焚化飛灰之生成與特性 5 2-1-1 焚化糸統運作流程5 2-1-2 焚化飛灰種類7 2-1-3 焚化飛灰特性9 2-2 焚化飛灰處理與資源化 11 2-2-1 焚化飛灰處理與處置現況 11 2-2-2 焚化飛灰資源化技術 15 2-2-3 焚化飛灰資源化現況與困境18 2-3 水熱反應之原理與應用 24 2-3-1 水熱反應原理24 2-3-2 水熱反應之技術發展與應用25 2-3-3 水熱反應合成鈣矽水合礦物26 2-3-4 水熱反應製備輕質性鈣矽水合材料 27 2-4 冷燒結之原理與應用30 2-4-1 燒結理論30 2-4-2 冷燒結之技術發展與應用 34 2-4-3 冷燒結技術製備緻密性鈣矽水合材料39 2-4-4 CSP用於固化飛灰中重金屬可行性 47 第三章 研究材料、設備與方法50 3-1 研究架構 50 3-2 研究材料與設備51 3-2-1 實驗試藥列表及說明 51 3-2-2 實驗儀器設備列表及說明 52 3-3 研究分析與方法60 3-3-1 實驗設計60 3-3-2 漿體製備及水熱反應程序 61 3-3-3 輕質性鈣矽水合材料分析方法 62 3-3-4 預處理與冷燒結程序 65 3-3-5 緻密鈣矽水合材料CSP處理後塊材分析 68 第四章 結果與討論69 4-1 焚化飛灰相關條件探討 69 4-1-1 FA與WFA三成份分析69 4-1-2 焚化飛灰中的礦物組成70 4-1-3 化學成份分析71 4-1-4 粒徑分析73 4-1-5 飛灰基本性質分析75 4-2 輕質性鈣矽水合材料製備樣本結構性能之探討 79 4-2-1 輕質性鈣矽水合材料樣本成份分析 80 4-2-2 輕質性鈣矽水合材料樣本體積密度 81 4-2-3 輕質性鈣矽水合材料樣本抗壓強度 83 4-2-4 輕質性鈣矽水合材料樣本性能因子 85 4-2-5 不同配比WFA對TobermoriTe生成的影響87 4-2-6 輕質性鈣矽水合材料微觀結構分析 91 4-2-7 小結97 4-3 緻密性鈣矽水合材料製備樣本結構性能之探討 99 4-3-1 緻密鈣矽水合材料製備預處理 99 4-3-2 緻密鈣矽水合材料經冷燒結製備101 4-3-3 緻密鈣矽水合材料經冷燒結處理後塊材重金屬分析107 4-3-4 緻密鈣矽水合材料塊材表面與斷面微觀結構分析 108 4-3-5 緻密鈣矽水合材料經CSP處理對於內部重金屬穩定機制110 4-3-6 小結114 第五章 結論與建議115 5-1 結論 115 5-2 建議 116 參考文獻117

    1. 行政院環境部環境管理署. 焚化廠營運管理資訊系統.; Available from: https://swims.moenv.gov.tw/ , 2023.
    2. 社團法人台灣環境資訊協會 , 2020.
    3. 左峻宇, 都市垃圾焚化飛灰水洗廢水全回收與模廠試驗之研究, in 水資源及環境工程學系碩士班.淡江大學: 新北市. p. 59 , 2020.
    4. Loginova, E., M. Proskurnin, and H.J.H. Brouwers, Municipal solid waste incineration (MSWI) fly ash composition analysis: A case study of combined chelatant-based washing treatment efficiency. Journal of Environmental Management. 235: p. 480-488 , 2019.
    5. 高振昌, 水洗垃圾焚化底渣與水洗土資源化於控制性低強度材料, in 土木工程與防災科技研究所.國立高雄應用科技大學: 高雄市. p. 136 , 2015.
    6. Chen, X., et al., Chlorides removal and control through water-washing process on MSWI fly ash. Procedia Environmental Sciences. 31: p. 560-566 , 2016.
    7. Chen, W.-S., et al., Removal of chloride from MSWI fly ash. Journal of Hazardous Materials. 237-238: p. 116-120 , 2012.
    8. Zhang, J., et al., A novel approach for preparing glass ceramic foams from MSWI fly ash: foaming characteristics and hierarchical pore formation mechanism. Journal of Materials Research and Technology. 18: p. 731-744 , 2022.
    9. Wang, X., et al., Efficiently sintering of MSWI fly ash at a low temperature enhanced by in-situ pressure assistant: Process performance and product characterization. Waste Management. 134: p. 21-31 , 2021.
    10. Chandler, A.J., et al., Municipal solid waste incinerator residues. Elsevier , 1997.
    11. Al-Ghouti, M.A., et al., Recent advances and applications of municipal solid wastes bottom and fly ashes: Insights into sustainable management and conservation of resources. Environmental Technology & Innovation. 21: p. 101267 , 2021.
    12. Tsai, C.-H., Y.-H. Shen, and W.-T. Tsai, Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan. Resources. 9(10) , 2020.
    13. 范哲榮, 垃圾焚化底渣水洗去氯及水洗液色度去除之研究, in 環境工程與科學系所. 國立屏東科技大學: 屏東縣. p. 109 , 2009.
    14. Sharifikolouei, E., et al., Vitrification of municipal solid waste incineration fly ash: An approach to find the successful batch compositions. Ceramics International. 47(6): p. 7738-7744 , 2021.
    15. Zhang, Y., et al., Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials. 411: p. 125132 , 2021.
    16. Belevi, H. and H. Moench, Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environmental science & technology. 34(12): p. 2501-2506 , 2000.
    17. Morf, L.S., P.H. Brunner, and S. Spaun, Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator. Waste Management and Research. 18(1): p. 4-15 , 2000.
    18. He, H., et al., Emission characteristics of dioxins during iron ore Co-sintering with municipal solid waste incinerator fly ash in a sintering pot. Chemosphere. 287: p. 131884 , 2022.
    19. De Boom, A. and M. Degrez, Belgian MSWI fly ashes and APC residues: a characterisation study. Waste management. 32(6): p. 1163-1170 , 2012.
    20. Wongsa, A., et al., Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. Journal of Cleaner Production. 148: p. 49-59 , 2017.
    21. Phua, Z., et al., Characteristics of incineration ash for sustainable treatment and reutilization. Environmental Science and Pollution Research. p. 26 , 2019.
    22. Chang, C.Y., et al., Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Journal of Hazardous Materials. 165(1-3): p. 766-73 , 2009.
    23. Chimenos., J.M., et al., Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials. 64(3): p. 211-222 , 1999.
    24. Chen, L., et al., Sustainable stabilization/solidification of municipal solid waste incinerator fly ash by incorporation of green materials. Journal of Cleaner Production. 222: p. 335-343 , 2019.
    25. Tang, P., et al., Immobilization of hazardous municipal solid waste incineration fly ash by novel alternative binders derived from cementitious waste. Journal of hazardous materials. 393: p. 122386 , 2020.
    26. Su, X., et al., Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technology. 286: p. 9-15 , 2015.
    27. Lam, C.H.K., et al., Use of incineration MSW ash: a review. Sustainability. 2(7): p. 1943-1968 , 2010.
    28. Qian, G., et al., Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of hazardous materials. 129(1-3): p. 274-281 , 2006.
    29. Liu, G., et al., Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations. Journal of Hazardous Materials. 299: p. 471-478 , 2015.
    30. Alba, N., et al., Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems. Journal of the Air & Waste Management Association. 47(11): p. 1170-1179 , 1997.
    31. Romero, M., et al., Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics. Materials Research Bulletin. 36(1-2): p. 383-395 , 2001.
    32. Cheng, T. and Y. Chen, Characterisation of glass ceramics made from incinerator fly ash. Ceramics International. 30(3): p. 343-349 , 2004.
    33. Pan, J.R., et al., Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management. 28(7): p. 1113-1118 , 2008.
    34. Andreola, F., et al., Reuse of incinerator bottom and fly ashes to obtain glassy materials. Journal of hazardous materials. 153(3): p. 1270-1274 , 2008.
    35. Haiying, Z., Z. Youcai, and Q. Jingyu, Study on use of MSWI fly ash in ceramic tile. Journal of Hazardous Materials. 141(1): p. 106-114 , 2007.
    36. Ginés, O., et al., Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of hazardous materials. 169(1-3): p. 643-650 , 2009.
    37. Yang, J., B. Xiao, and A.R. Boccaccini, Preparation of low melting temperature glass–ceramics from municipal waste incineration fly ash. Fuel. 88(7): p. 1275-1280 , 2009.
    38. Liu, Z., et al., Ash fusion characteristics of bamboo, wood and coal. Energy. 161: p. 517-522 , 2018.
    39. Floyd, H. and L. Anthony, Analysis of heavy metal emission data from municipal waste combustion. Journal of Hazardous Materials. 47: p. 77-102 , 1995.
    40. Kumar, A., S. Abbas, and S. Saluja, Utilization of incineration ash as a construction material: A review. Materials Today: Proceedings , 2023.
    41. Ren, P., K.H. Mo, and T.-C. Ling, Chapter 10 - Stabilization/solidification of municipal solid waste incineration fly ash, in Low Carbon Stabilization and Solidification of Hazardous Wastes, D.C.W. Tsang and L. Wang, Editors. Elsevier. p. 141-156 , 2022.
    42. Fan, C., et al., A comparative study on solidification/stabilization characteristics of coal fly ash-based geopolymer and Portland cement on heavy metals in MSWI fly ash. Journal of Cleaner Production. 319: p. 128790 , 2021.
    43. Quina, M.J., J.C. Bordado, and R.M. Quinta-Ferreira, Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Management. 28(11): p. 2097-2121 , 2008.
    44. Quina, M.J., J.C. Bordado, and R.M. Quinta-Ferreira, Chemical stabilization of air pollution control residues from municipal solid waste incineration. Journal of Hazardous Materials. 179(1-3): p. 382-392 , 2010.
    45. Mangialardi, T., et al., Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. Journal of Hazardous Materials. 70(1-2): p. 53-70 , 1999.
    46. Chen, Z., et al., Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process. Waste management. 109: p. 28-37 , 2020.
    47. Qiu, Q., et al., Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process. Journal of Material Cycles and Waste Management. 21(3): p. 469-477 , 2019.
    48. Zhang, Z., et al., Stabilization/solidification of municipal solid waste incineration fly ash via co-sintering with waste-derived vitrified amorphous slag. Waste Management. 56: p. 238-245 , 2016.
    49. Yang, Y., et al., Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Journal of Hazardous Materials. 154(1-3): p. 871-879 , 2008.
    50. Huang, K., et al., Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Transactions of Nonferrous Metals Society of China. 21(6): p. 1422-1427 , 2011.
    51. Song, B., et al., Compressive strength, water and chloride transport properties of early CO2-cured Portland cement-fly ash-slag ternary mortars. Cement and Concrete Composites. 134: p. 104786 , 2022.
    52. Zhao, W. and Q. Yang, Performance characterization and life cycle assessment of semi-flexible pavement after composite modification of cement-based grouting materials by desulfurization ash, fly ash, and rubber powder. Construction and Building Materials. 359: p. 129549 , 2022.
    53. Chu, H., et al., Effect of stray current on stability of bound chlorides in chloride and sulfate coexistence environment. Construction and Building Materials. 194: p. 247-256 , 2019.
    54. Joseph, A.M., et al., The use of municipal solid waste incineration ash in various building materials: a Belgian point of view. Materials. 11(1): p. 141 , 2018.
    55. 李善源, 水洗焚化飛灰再利用於氣泡混凝土及其孔洞特性之探討, in 資源工程學系.國立成功大學 , 2021.
    56. Kang, D., et al., Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chemical Engineering Journal. 380: p. 122534 , 2020.
    57. Phua, Z., et al., Characteristics of incineration ash for sustainable treatment and reutilization. Environmental Science and Pollution Research. 26(17): p. 16974-16997 , 2019.
    58. Huang, C.-M., et al., The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Management. 26(9): p. 979-987 , 2006.
    59. Liu, Y., et al., Limitations of the TCLP fluid determination step for hazardous waste characterization of US municipal waste incineration ash. Waste Management. 87: p. 590-596 , 2019.
    60. 行政院環保署. 灰渣產量與流向. 2020.
    61. Jiang, Y., et al., Effect of water-extraction on characteristics of melting and solidification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials. 161(2-3): p. 871-877 , 2009.
    62. Clavier, K.A., et al., Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production – a review. Resources, Conservation and Recycling. p. 160, 2020.
    63. Rémond, S., P. Pimienta, and D.P. Bentz, Effects of the incorporation of municipal solid waste incineration fly ash in cement pastes and mortars: I. Experimental study. Cement and Concrete Research. 32(2): p. 303-311 , 2002.
    64. Guo, X. and T. Zhang, Utilization of municipal solid waste incineration fly ash to produce autoclaved and modified wall blocks. Journal of Cleaner Production. 252: p. 119759 , 2020.
    65. Leiva, C., et al., A mechanical, leaching and radiological assessment of fired bricks with a high content of fly ash. Ceramics International. 44(11): p. 13313-13319 , 2018.
    66. Quina, M.J., J.M. Bordado, and R.M. Quinta-Ferreira, Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates. Waste Management. 34(2): p. 430-8 , 2014.
    67. Yang, G.C. and T.-Y. Yang, Synthesis of zeolites from municipal incinerator fly ash. Journal of Hazardous Materials. 62(1): p. 75-89 , 1998.
    68. Dou, X., et al., Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews. 79: p. 24-38 , 2017.
    69. Ghosh, A., M. Mukiibi, and W. Ela, TCLP Underestimates Leaching of Arsenic from Solid Residuals under Landfill Conditions. Environmental Science & Technology. 38(17): p. 4677-4682 , 2004.
    70. Yuan, Q., et al., Chloride binding of cement-based materials subjected to external chloride environment – A review. Construction and Building Materials. 23(1): p. 1-13 , 2009.
    71. Suryavanshi, A., J. Scantlebury, and S. Lyon, Corrosion of reinforcement steel embedded in high water-cement ratio concrete contaminated with chloride. Cement and Concrete Composites. 20(4): p. 263-281 , 1998.
    72. Glass, G.K. and N.R. Buenfeld, The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corrosion Science. 42(2): p. 329-344 , 2000.
    73. Saikia, N., et al., Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar. Construction and Building Materials. 96: p. 76-85 , 2015.
    74. Ping, X. and J.J. Beaudoin, Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cement and Concrete Research. 22(4): p. 631-640 , 1992.
    75. García-Maté, M., et al., Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cement and Concrete Composites, 2015. 55: p. 53-61.
    76. Andrade Neto, J.d.S., A.G. De la Torre, and A.P. Kirchheim, Effects of sulfates on the hydration of Portland cement – A review. Construction and Building Materials. 279: p. 122428 , 2021.
    77. Durlak, S.K., P. Biswas, and J. Shi, Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators. Journal of Hazardous Materials. 56(1): p. 1-20 , 1997.
    78. 張坤森, 邱孔濱, and 陳麗萍, 垃圾焚化飛灰特性、處理再利用技術、法規與未來展望. 環境工程會刊. p. 1-16 , 2012.
    79. Haiying, Z., Z. Youcai, and Q. Jingyu, Characterization of heavy metals in fly ash from municipal solid waste incinerators in Shanghai. Process Safety and Environmental Protection. 88(2): p. 114-124 , 2010.
    80. Shi, H.-S. and L.-L. Kan, Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. Journal of hazardous materials. 164(2-3): p. 750-754 , 2009.
    81. Mangialardi, T., Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials. 98(1-3): p. 225-240 , 2003.
    82. García-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez, Alkali–aggregate reaction in activated fly ash systems. Cement and Concrete Research. 37(2): p. 175-183 , 2007.
    83. 徐如人, 龐文琴, and 于吉紅, 分子篩與多孔材料化學 (Chemistry—Zeolites and Porous Materials).北京: 科学出版社 (Beijing: Science Press) , 2004.
    84. 蘇存義, et al., 以水玻璃為原料製備含水層狀矽酸鹽. 鑛冶: 中國鑛冶工程學會會刊. 52(3): p. 147-153 , 2008.
    85. Dawson, W.J., Hydrothermal synthesis of advanced ceramic powders. American Ceramic Society Bulletin. 67(10): p. 1673-1678 , 1988.
    86. Hong, S.Y. and F.P. Glasser, Phase relations in the CaO–SiO2–H2O system to 200 °C at saturated steam pressure. Cement and Concrete Research. 34(9): p. 1529-1534 , 2004.
    87. Shi, D., et al., Silicon-aluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from MSW incineration. Fuel Processing Technology. 165: p. 44-53 , 2017.
    88. Mitsuda, T., K. Sasaki, and H. Ishida, Phase evolution during autoclaving process of aerated concrete. Journal of the American Ceramic Society. 75(7): p. 1858-1863 , 1992.
    89. Siauciunas, R. and K. Baltakys, Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz. Cement and Concrete Research. 34(11): p. 2029-2036 , 2004.
    90. Hamad, A.J., Materials, production, properties and application of aerated lightweight concrete. International journal of materials science and engineering. 2(2): p. 152-157 , 2014.
    91. Roy, R.E., et al., Aerated Concrete Production Using Various Raw Materials: A Review. International Research Journal of Engineering and Technology (IRJET), 05: 4377. 4381 , 2020.
    92. Kikuma, J., et al., Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition. Journal of Synchrotron Radiation. 16(5): p. 683-686 , 2009.
    93. Qu, X. and X. Zhao, Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete – A review. Construction and Building Materials. 135: p. 505-516 , 2017.
    94. Hou, L., et al., Influence of foaming agent on cement and foam concrete. Construction and Building Materials. 280: p. 122399 , 2021.
    95. Ji, Z., et al., Porosity, mechanical strength and structure of waste-based geopolymer foams by different stabilizing agents. Construction and Building Materials. 258: p. 119555 , 2020.
    96. Kearsley, E. and P. Wainwright, The effect of porosity on the strength of foamed concrete. Cement and concrete research. 32(2): p. 233-239 , 2002.
    97. Duran, C., et al., Eco-friendly processing and methods for ceramic materials-A review. Journal of the Ceramic Society of Japan. 116(1359): p. 1175-1181 , 2008.
    98. Ibn-Mohammed, T., et al., Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector. Journal of the European Ceramic Society. 39(16): p. 5213-5235 , 2019.
    99. German, R.M., Sintering theory and practice. 1996.
    100. Ashby, M. and K. Johnson, Chapter 4 - Materials: The Stuff That Surrounds Us, in Materials and Design (Third Edition), M. Ashby and K. Johnson, Editors. Butterworth-Heinemann. p. 62-98 , 2014.
    101. Zhang, W. and I. Gladwell, Performance of MOL for surface motion driven by a Laplacian of curvature, in Numerical Treatment of Multiphase Flows in Porous Media. Springer. p. 419-429 , 2000.
    102. Sutton, W.H., Microwave processing of ceramic materials. American Ceramic Society Bulletin. 68(2): p. 376-386 , 1989.
    103. Kingery, W.D., H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics. Vol. 17. John wiley & sons , 1976.
    104. Guillon, O., et al., Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Advanced Engineering Materials. 16(7): p. 830-849 , 2014.
    105. Galotta, A. and V.M. Sglavo, The cold sintering process: A review on processing features, densification mechanisms and perspectives. Journal of the European Ceramic Society. 41(16): p. 1-17 , 2021.
    106. Vakifahmetoglu, C. and L. Karacasulu, Cold sintering of ceramics and glasses: A review. Current Opinion in Solid State and Materials Science. 24(1): p. 100807, 2020.
    107. Rojek, J., et al., Discrete element simulation of powder sintering. 2022.
    108. German, R.M., P. Suri, and S.J. Park, Liquid phase sintering. Journal of materials science. 44(1): p. 1-39 , 2009.
    109. Grasso, S., et al., A review of cold sintering processes. Advances in Applied Ceramics. 119(3): p. 115-143 , 2020.
    110. Hirano, S.-i., HYDROTHERMAL REACTION SINTERING OF PURE CR2O3. 1976.
    111. Toraya, H., M. Yoshimura, and S. Somiya, Hydrothermal Reaction‐Sintering of Monoclinic HfO2. Journal of the American Ceramic Society. 65(9): p. c159-c160 , 1982.
    112. Sōmiya, S., et al., Hydrothermal reaction sintering of Cr 2 O 3 and iron oxides, in Hydrothermal Reactions for Materials Science and Engineering. Springer. p. 4-14 , 1989.
    113. Somiya, S., Hydrothermal reactions for materials science and engineering: an overview of research in Japan. 2012.
    114. Gutmanas, E., A. Rabinkin, and M. Roitberg, Cold sintering under high pressure. Scripta Metallurgica. 13(1): p. 11-15 , 1979.
    115. Gutmanas, E., et al., Cold Sintered Stainless Steel--Chromium Oxide Composites. Progress in Powder Metallurgy. 41: p. 631-640 , 1985.
    116. Gutmanas, E., et al., Cold Sintered 4640 Steel--Vanadium Carbide Composites. Horizons of Powder Metallurgy. Part II: p. 1083-1086 , 1986.
    117. Gutmanas, E. and D. Zak, Mechanical Behaviour of Cold Sintered High Speed Steel--Carbides Composites. Modern Developments in Powder Metallurgy. 20: p. 421-429 , 1988.
    118. Costa, T.M., et al., Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. The Journal of Physical Chemistry B. 103(21): p. 4278-4284 , 1999.
    119. Goldman, D., E. Gutmanas, and D. Zak, Reduction of oxides and cold sintering of water-atomized powders of Ni, Ni-20Cr and Nimonic 80A. Journal of materials science letters. 4(10): p. 1208-1212 , 1985.
    120. Yamasaki, N., et al., A hydrothermal hot-pressing method: apparatus and application, in Hydrothermal Reactions for Materials Science and Engineering. Springer. p. 423-424 , 1989.
    121. Yanagisawa, K., Q. Feng, and N. Yamasaki, Preparation of ceramics by hydrothermal hot-pressing. International Journal of High Pressure Research. 20(1-6): p. 343-349 , 2001.
    122. Veloza, Z.M., K. Yanagizawa, and N. Yamasaki, Recycling waste glasses by means of the hydrothermal hot pressing method. Journal of materials science letters. 18(22): p. 1811-1813 , 1999.
    123. Nishioka, M., K. Yanagisawa, and N. Yamasaki, Solidification of sludge ash by hydrothermal hot-pressing. Research journal of the water pollution control federation: p. 926-932 , 1990.
    124. Yanagisawa, K., et al., Novel route for recycling of steelmaking slag by means of the hydrothermal hot-pressing method. Journal of materials science letters. 21(9): p. 693-695 , 2002.
    125. Hirai, N., et al., Fabrication of porous solidified materials from blast furnace slag using hydrothermal hot-pressing method and measurement of thermal conductivity of solidified materials. TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN. 95(1): p. 1A-6A , 2009.
    126. Yoshikawa, T., M. Hosokawa, and T. Tanaka, MgO effect on hydrothermal solidification of blast furnace slag. ISIJ international. 48(5): p. 557-562 , 2008.
    127. Tae, S.-J., T. Tanaka, and K. Morita, Effect of microwave irradiation on hydrothermal treatment of blast furnace slag. ISIJ international. 49(8): p. 1259-1264 , 2009.
    128. Sun, P. and H.-C. Wu, Splitting tensile strength of fly ash activated by hydrothermal hot-pressing process. Journal of materials in civil engineering. 21(8): p. 356-361 , 2009.
    129. Song, H., et al., Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing. Advanced Powder Technology. 29(6): p. 1487-1492 , 2018.
    130. Vakifahmetoglu, C., et al., Reactive Hydrothermal Liquid-Phase Densification (rHLPD) of Ceramics – A Study of the BaTiO3[TiO2] Composite System. Journal of the American Ceramic Society. 99(12): p. 3893-3901, 2016.
    131. Randall, C.A., et al., Cold sintering ceramics and composites. 2017, Google Patents.
    132. Guo, J., et al., Cold sintering process: a new era for ceramic packaging and microwave device development. Journal of the American Ceramic Society. 100(2): p. 669-677 , 2017.
    133. Gupta, C. and H. Singh, Uranium resource processing: secondary resources. Springer Science & Business Media , 2003.
    134. Medri, V., et al., Nano-to-macroporous TiO2 (anatase) by cold sintering process. Journal of the European Ceramic Society. 39(7): p. 2453-2462 , 2019.
    135. Ndayishimiye, A., et al., Roadmap for densification in cold sintering: Chemical pathways. Open Ceramics. 2: p. 100019 , 2020.
    136. Guo, H., et al., Cold sintering process: a novel technique for low‐temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society. 99(11): p. 3489-3507 , 2016.
    137. Li, L., et al., Effects of water content during cold sintering process of NaCl ceramics. Journal of Alloys and Compounds. 787: p. 352-357 , 2019.
    138. Biesuz, M., et al., A theoretical analysis of cold sintering. Advances in Applied Ceramics. 119(2): p. 75-89 , 2020.
    139. Rahaman, M.N., Ceramic processing and sintering. CRC press , 2017.
    140. Guo, H., et al., Protocol for ultralow-temperature ceramic sintering: an integration of nanotechnology and the cold sintering process. ACS nano. 10(11): p. 10606-10614 , 2016.
    141. Seo, J.-H., et al., Cold sintering of a Li-ion cathode: LiFePO4-composite with high volumetric capacity. Ceramics International. 43(17): p. 15370-15374 , 2017.
    142. Seo, J.-H., et al., Broad temperature dependence, high conductivity, and structure-property relations of cold sintering of LLZO-based composite electrolytes. Journal of the European Ceramic Society. 40(15): p. 6241-6248 , 2020.
    143. Berbano, S.S., et al., Cold sintering process of Li1. 5Al0. 5Ge1. 5 (PO4) 3 solid electrolyte. Journal of the American Ceramic Society. 100(5): p. 2123-2135 , 2017.
    144. de Beauvoir, T.H., et al., Cold sintering of ZnO-PTFE: Utilizing polymer phase to promote ceramic anisotropic grain growth. Acta Materialia. 186: p. 511-516 , 2020.
    145. Liu, J.-A., et al., Preparation of high-density InGaZnO4 target by the assistance of cold sintering. Materials Science in Semiconductor Processing. 84: p. 17-23 , 2018.
    146. Nayir, S., et al., Cold sintering of a covalently bonded MoS2/graphite composite as a high capacity Li–ion electrode. ChemNanoMat. 4(10): p. 1088-1094 , 2018.
    147. Huang, B., et al., Recent progress on the thermal treatment and resource utilization technologies of municipal waste incineration fly ash: A review. Process Safety and Environmental Protection. 159: p. 547-565 , 2022.
    148. 胡豔軍, 方., 嚴密, 水熱法穩定垃圾焚燒飛灰重金屬研究. 浙江工業大學學報p. 192-198 , 2018.
    149. Qiu, Q., et al., Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process. Chinese Journal of Chemical Engineering. 27(7): p. 1708-1715 , 2019.
    150. Xie, J., et al., Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization. Frontiers of Environmental Science & Engineering in China. 4(1): p. 108-115 , 2010.
    151. CNS 1010 R3032 水硬性水泥墁料抗壓強度檢驗法.
    152. NIEA R205.01C 廢棄物中灰分、可燃分測定方法.
    153. 吳仲恩, 冷燒結技術穩定/固化飛灰中重金屬之研究. 2022.
    154. Haiying, Z., Z. Youcai, and Q. Jingyu, Thermal characterization of fly ash from one municipal solid waste incinerator (MSWI) in Shanghai. Process Safety and Environmental Protection. 88(4): p. 269-275 , 2010.
    155. Wieczorek-Ciurowa, K., J. Paulik, and F. Paulik, Influence of foreign materials upon the thermal decomposition of dolomite, calcite and magnesite part I. Influence of sodium chloride. Thermochimica Acta. 38(2): p. 157-164 , 1980.
    156. Du, B., et al., Characterization of naturally aged cement-solidified MSWI fly ash. Waste Management. 80: p. 101-111 , 2018.
    157. Galan, I., F.P. Glasser, and C. Andrade, Calcium carbonate decomposition. Journal of Thermal Analysis and Calorimetry. 111(2): p. 1197-1202 , 2013.
    158. Chen, Y.-L. and C.-T. Lin, Recycling of Basic Oxygen Furnace Slag as a Raw Material for Autoclaved Aerated Concrete Production. Sustainability. 12(15): p. 5896 , 2020.
    159. Li, X., et al., Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Construction and Building Materials. 178: p. 175-182 , 2018.
    160. Helanova, E., R. Drochytka, and V. Cerny. Influence of gypsum additive on the formation of tobermorite in autoclaved aerated concrete. in Key Engineering Materials. 2016.
    161. Venhodová, E., R. Janovský, and R. Drochytka, Formation of Tobermorite at Different Materials Composition of Aerated Concrete. Applied Mechanics and Materials. 752: p. 247-250 , 2015.
    162. Chen, Y.-L., et al., Recycling of desulfurization slag for the production of autoclaved aerated concrete. Construction and Building Materials. 158: p. 132-140 , 2018.
    163. Ramamurthy, K. and N. Narayanan, Factors influencing the density and compressive strength of aerated concrete. Magazine of Concrete Research. 52(3): p. 163-168 , 2000.
    164. Neto, J.d.S.A., G. Angeles, and A.P. Kirchheim, Effects of sulfates on the hydration of Portland cement–A review. Construction and Building Materials. 279: p. 122428 , 2021.
    165. Hartmann, A., D. Schulenberg, and J.-C. Buhl, Investigation of the Transition Reaction of Tobermorite to Xonotlite under Influence of Additives. Advances in Chemical Engineering and Science. 05(02): p. 197-214 , 2015.
    166. Kumar, R., Effects of high volume dolomite sludge on the properties of eco-efficient lightweight concrete: Microstructure, statistical modeling, multi-attribute optimization through Derringer's desirability function, and life cycle assessment. Journal of Cleaner Production. 307: p. 127107 , 2021.
    167. Kurama, H., İ.B. Topçu, and C. Karakurt, Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology. 209(2): p. 767-773 , 2009.
    168. Lim, S.K., et al., Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Construction and Building Materials. 46: p. 39-47 , 2013.
    169. Shi, Y., et al., Life cycle assessment of autoclaved aerated fly ash and concrete block production: a case study in China. Environmental Science and Pollution Research. 26(25): p. 25432-25444 , 2019.
    170. Shams, T., et al., Production of autoclaved aerated concrete with silica raw materials of a higher solubility than quartz Part II: Influence of autoclaving temperature. Construction and Building Materials. 287: p. 123072 , 2021.
    171. Ouedraogo, A.L., et al., Thermo-Physical, Mechanical and Hygro-Thermal Properties of Newly Produced Aerated Concrete. Journal of Materials Science and Surface Engineering. 8: p. 1021-1028 , 2021.
    172. Li, R., et al., Investigation of MSWI fly ash melting characteristic by DSC–DTA. Waste Management. 27(10): p. 1383-1392 , 2007.
    173. Zhang, Y., et al., Review of harmless treatment of municipal solid waste incineration fly ash. Waste Disposal & Sustainable Energy. 2(1): p. 1-25 , 2020.
    174. Geng, C., et al., Novel method for comprehensive utilization of MSWI fly ash through co-reduction with red mud to prepare crude alloy and cleaned slag. Journal of Hazardous Materials. 384: p. 121315 , 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE