簡易檢索 / 詳目顯示

研究生: 曹芷瑄
Tsao, Chih-Hsuan
論文名稱: 全無機銫鉛鹵化物鈣鈦礦微米晶體激子侷域行為之研究
Spectral and Dynamic Characteristics of Exciton Localization in All Inorganic Cesium Lead Halide Perovskite Micro-crystals
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 78
中文關鍵詞: 溴化銫鉛鈣鈦礦微米晶體激子侷域激子偏極子載子侷域行為
外文關鍵詞: CsPbBr3, microcrystal, exciton, localized exciton, polaron, carrier localization
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銫機無機鈣鈦礦擁有良好的環境穩定性,已被廣泛運用到光電元件上,而有必要了解鈣鈦礦的載子複合機制。無機鈣鈦礦具有較大的激子束縛能,因此光激發載子的複合在室溫下由激子主導。當晶體中存在缺陷態時,自由激子會被束縛住形成侷域激子,進而限制了載子的移動。在許多報導中皆觀察到了侷域態存在於鈣鈦礦中。然而,目前還沒有研究明確指出鈣鈦礦中的載子侷域效應主導機制為何。因此,釐清鈣鈦礦中的侷域態形成主因將有助於提供改善光電元件的策略。
    在本論文中我們以化學氣相沉積法製備溴化銫鉛(CsPbBr3)鈣鈦礦微米晶體。我們選擇了簡單的氧處理對溴化銫鉛鈣鈦礦進行缺陷鈍化,以確保晶體含有較低的缺陷態。透過材料分析,我們發現原始溴化銫鉛鈣鈦礦微米晶體為雙相溴化銫鉛鈣鈦礦參雜了准二維衍生相(CsPb2Br5),經過氧處理後的晶體則為單相溴化銫鉛鈣鈦礦晶體。首先我們先釐清兩種晶體的載子複合機制。從激發功率相關的光致發光光譜,我們觀察到雙相溴化銫鉛中含有陷阱態,而兩種晶體的載子複合都由激子主導。經由變溫光致發光螢光光譜,確定雙相鈣鈦礦中的發光機制由侷域激子主導,而單相鈣鈦礦中則存在多種激子機制。最後,為了進一步釐清侷域激子的形成原因,我們執行時間解析光致發光(TRPL)測量以及分析不同發光能量的載子生命期。證實了雙相溴化銫鉛有更深的陷阱態。結合多激子態結構與載子弛豫行為,我們可以確定在溴化銫鉛中的載子侷域行為是由偏極子主導。此外,我們也證實了氧氣可以有效鈍化鈣鈦礦的深層缺陷。

    Cesium‐based inorganic perovskites have been widely used in optoelectronic devices because of their stability. It is necessary to understand the mechanism of the carrier recombination. Due to the large exciton binding energy of inorganic perovskites, the exciton dominates the charge carrier recombination at room temperature. Free excitons will be bound in localized states to form localized excitons. It has been observed that localized states exist in perovskites. However, the origin of these localized states has not been fully understood. Therefore, clarifying the leading cause of carrier localization in perovskites will help provide strategies for improving optoelectronic devices.
    In this work, we synthesized perovskite microcrystals by the chemical vapor deposition (CVD) method. We chose oxygen treatment to passivate defects to ensure that the crystal contains low defect states. Through material analysis, we found that the original perovskite microcrystal is a dual-phase CsPbBr3-CsPb2Br5 perovskite, and we obtained single-phase CsPbBr3 microcrystals via oxygen treatment. Through performing power-dependent PL and temperature-dependent PL, We clarified that the mechanism of light-emission is dominated by localized exciton in dual-phase CsPbBr3-CsPb2Br5. In contrast, the multi-exciton states exist in single-phase CsPbBr3. To further understand the origin of the carrier localization, we carried out the time-resolved PL(TRPL) and energy-dependent TRPL measurements. We confirmed that the deep trap exists in dual-phase CsPbBr3-CsPb2Br5. Combining the multi-excitonic state structure and carrier relaxation behavior, we can determine that carrier localization is dominated by the polarons in perovskites. In addition, we have also confirmed that oxygen can effectively passivate the deep defects of perovskite.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Chapter1. Introduction 1 1.1. Preface 1 1.2. Historical Review 2 1.2.1. Perovskites 2 1.2.2. Carrier Localization 7 1.3. Motivation 12 Chapter2. Physical Theories 13 2.1. Material Characteristics of Perovskites 13 2.1.1. Crystal Structure 13 2.1.2. Trap in Perovskites 18 2.1.3. Surface passivation treatment of perovskites 19 2.2. Optic properties 21 2.2.1. Basic Optical Properties 21 2.2.2. Photoluminescence 22 2.2.3. Recombination progress in material 24 2.3. Carrier Localization 26 2.3.1. Localized exciton 26 2.3.2. Polaron 28 Chapter3. Experiment Process and Measurement 30 3.1. Synthesis of Perovskite Microcrystals 30 3.1.1. Chemical Vapor Deposition 30 3.1.2. Oxygen Treatment 32 3.2 Sample Analysis 33 3.2.1. Field Emission Scanning Electron Microscope (FE-SEM) 33 3.2.2. X-Ray Diffraction (XRD) 34 3.3 Optical Measurement 36 3.3.1. Micro-Photoluminescence (micro-PL) 36 3.3.2. Time-Resolved Photoluminescence (TRPL) System 37 3.3.3. Micro-Optical Absorption 40 3.3.4. Time-dependent Photoluminescence System 41 3.3.5. PL mapping 42 Chapter4. RESULTS AND DISCUSSION 43 4.1. Morphology and Structure 43 4.1.1. Images of Optical Microscope and SEM 43 4.1.2. XRD Analysis 45 4.1.3. EDX Analysis 46 4.2. Basic Optical properties 49 4.2.1. Time-dependent PL spectra 49 4.2.2. Optical Absorption and PL spectra 50 4.2.3. Excitation Power dependent PL spectra 51 4.2.4. PL mapping 54 4.3. Temperature- dependent PL 55 4.4. Carrier localization in dual-phase CsPbBr3-CsPb2Br5 63 4.4.1. Time-Resolved PL Analysis 63 4.4.2. Energy-Dependent Time-Resolved PL Analysis 64 4.5. Carrier localization in single-phase CsPbBr3 67 4.5.1. Time-Resolved PL Analysis 67 4.5.2. Energy-Dependent Time-Resolved PL Analysis 69 Chapter5. Summary 72 5.1. Conclusion 72 Reference 73

    1 N. A. N. Ouedraogo, Y. Chen, Y. Y. Xiao, Q. Meng, C. B. Han, H. Yan, and Y. Zhang, Nano Energy 67, 104249 (2020).
    2 W. Du, S. Zhang, Z. Wu, Q. Shang, Y. Mi, J. Chen, C. Qin, X. Qiu, Q. Zhang, and X. Liu, Nanoscale 11, 3145 (2019).
    3 X. Zhang, W. Wang, B. Xu, S. Liu, H. Dai, D. Bian, S. Chen, K. Wang, and X. W. Sun, Nano Energy 37, 40 (2017).
    4 G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, and P. Mandal, Nano letters 16, 4838 (2016).
    5 M. Baranowski, P. Plochocka, R. Su, L. Legrand, T. Barisien, F. Bernardot, Q. Xiong, C. Testelin, and M. Chamarro, Photonics Research 8, A50 (2020).
    6 Z. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall, R. Sutton, A. Haghighirad, H. Snaith, D. Maude, and P. Plochocka, ACS Energy Letters 2, 1621 (2017).
    7 J. Kang and L.-W. Wang, The Journal of Physical Chemistry Letters 8, 489 (2017).
    8 Y. Yuan, M. Chen, S. Yang, X. Shen, Y. Liu, and D. Cao, Journal of Luminescence 226, 117471 (2020).
    9 X. Lao, Z. Yang, Z. Su, Z. Wang, H. Ye, M. Wang, X. Yao, and S. Xu, Nanoscale 10, 9949 (2018).
    10 K. Shibata, J. Yan, Y. Hazama, S. Chen, and H. Akiyama, The Journal of Physical Chemistry C 124, 18257 (2020).
    11 H. Zhang, X. Liu, J. Dong, H. Yu, C. Zhou, B. Zhang, Y. Xu, and W. Jie, Crystal Growth & Design 17, 6426 (2017).
    12 G. Ghosh, B. Jana, S. Sain, A. Ghosh, and A. Patra, Physical Chemistry Chemical Physics 21, 19318 (2019).
    13 J. Deng, J. Li, Z. Yang, and M. Wang, Journal of Materials Chemistry C 7, 12415 (2019).
    14 K. T. Munson, E. R. Kennehan, G. S. Doucette, and J. B. Asbury, Chem 4, 2826 (2018).
    15 A. R. Chakhmouradian and P. M. Woodward, Physics and Chemistry of Minerals 41, 387 (2014).
    16 A. K. Jena, A. Kulkarni, and T. Miyasaka, Chemical reviews 119, 3036 (2019).
    17 S. Patwardhan, D. H. Cao, S. Hatch, O. K. Farha, J. T. Hupp, M. G. Kanatzidis, and G. C. Schatz, The Journal of Physical Chemistry Letters 6, 251 (2015).
    18 U. Schwarz, F. Wagner, K. Syassen, and H. Hillebrecht, Physical Review B 53, 12545 (1996).
    19 R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Physical Review Letters 71, 2331 (1993).
    20 J. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. Li, S. Choudhury, W. Tian, M. Hawley, and B. Craigo, Nature 430, 758 (2004).
    21 C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science 286, 945 (1999).
    22 D. B. Mitzi, K. Chondroudis, and C. R. Kagan, IBM Journal of Research and Development 45, 29 (2001).
    23 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of the American Chemical Society 131, 6050 (2009).
    24 in Best Research-Cell Efficiency Chart( Accessed: 2021-05-21); Vol. 2021-05-21.
    25 O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE Journal of Photovoltaics 2, 303 (2012).
    26 Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, and R.H. Friend, Nature Nanotechnology 9, 687 (2014).
    27 B. Zhao, S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J. M. Richter, L. Yang, L. Dai, and M. Alsari, Nature Photonics 12, 783 (2018).
    28 M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis, and K. Petridis, Materials 12, 859 (2019).
    29 Z. Liu, S. Huang, J. Du, C. Wang, and Y. Leng, Nanophotonics 9, 2251 (2020).
    30 G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nature materials 13, 476 (2014).
    31 Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, and G. Liao, Nano-micro letters 10, 1 (2018).
    32 S. Kundu and T. L. Kelly, EcoMat 2, e12025 (2020).
    33 G. Niu, X. Guo, and L. Wang, Journal of Materials Chemistry A 3, 8970 (2015).
    34 A. F. Akbulatov, S. Y. Luchkin, L. A. Frolova, N. N. Dremova, K. L. Gerasimov, I. S. Zhidkov, D. V. Anokhin, E. Z. Kurmaev, K. J. Stevenson, and P. A. Troshin, The Journal of Physical Chemistry Letters 8, 1211 (2017).
    35 J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, and X. Yi, Journal of the American Chemical Society 138, 15829 (2016).
    36 B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, and L. Yin, Nature Communications 9, 1 (2018).
    37 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science 347, 967 (2015).
    38 Y. Liu, Z. Yang, and S. Liu, Advanced Science 5, 1700471 (2018).
    39 X. D. Wang, W. G. Li, J. F. Liao, and D. B. Kuang, Solar RRL 3, 1800294 (2019).
    40 W. Pan, H. Wei, and B. Yang, Frontiers in Chemistry 8 (2020).
    41 Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, Advanced Functional Materials 26, 6238 (2016).
    42 H. Utzat, K. E. Shulenberger, O. B. Achorn, M. Nasilowski, T. S. Sinclair, and M. G. Bawendi, Nano Letters 17, 6838 (2017).
    43 Y. Wang, Y. Ren, S. Zhang, J. Wu, J. Song, X. Li, J. Xu, C. H. Sow, H. Zeng, and H. Sun, Communications Physics 1, 1 (2018).
    44 C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, and A. J. Freeman, Crystal Growth & Design 13, 2722 (2013).
    45 H. He, Q. Yu, H. Li, J. Li, J. Si, Y. Jin, N. Wang, J. Wang, J. He, and X. Wang, Nature Communications 7, 1 (2016).
    46 S. M. Lee, C. J. Moon, H. Lim, Y. Lee, M. Y. Choi, and J. Bang, The Journal of Physical Chemistry C 121, 26054 (2017).
    47 V. Mykhaylyk, H. Kraus, V. Kapustianyk, H. Kim, P. Mercere, M. Rudko, P. Da Silva, O. Antonyak, and M. Dendebera, Scientific Reports 10, 1 (2020).
    48 J. Chen, Q. Zhang, J. Shi, S. Zhang, W. Du, Y. Mi, Q. Shang, P. Liu, X. Sui, and X. Wu, Communications Physics 2, 1 (2019).
    49 A. Dey, P. Rathod, and D. Kabra, Advanced Optical Materials 6, 1800109 (2018).
    50 S. Singh, B. Sharma, G. Banappanavar, A. Dey, S. Chakraborty, K. Narasimhan, P. Bhargava, and D. Kabra, ACS Applied Energy Materials 1, 1870 (2018).
    51 F. Mariano, A. Cretì, L. Carbone, A. Genco, S. D’Agostino, S. Carallo, G. Montagna, M. Lomascolo, and M. Mazzeo, Communications Physics 3, 1 (2020).
    52 D. Niesner, O. Schuster, M. Wilhelm, I. Levchuk, A. Osvet, S. Shrestha, M. Batentschuk, C. Brabec, and T. Fauster, Physical Review B 95, 075207 (2017).
    53 L. D. Landau, Phys. Z. Sowjet. 3, 664 (1933).
    54 K. Miyata, D. Meggiolaro, M. T. Trinh, P. P. Joshi, E. Mosconi, S. C. Jones, F. De Angelis, and X.-Y. Zhu, Science Advances 3, e1701217 (2017).
    55 K. Miyata, T. L. Atallah, and X.-Y. Zhu, Science Advances 3, e1701469 (2017).
    56 C. D. Sonnichsen, D. P. Strandell, P. J. Brosseau, and P. Kambhampati, Physical Review Research 3, 023147 (2021).
    57 H. Baker, D. Strandell, and P. Kambhampati, The Journal of Physical Chemistry C 124, 18816 (2020).
    58 K. P. Goetz, A. D. Taylor, F. Paulus, and Y. Vaynzof, Advanced Functional Materials 30, 1910004 (2020).
    59 M. R. Filip and F. Giustino, Proceedings of the National Academy of Sciences 115, 5397 (2018).
    60 Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, and Y. Yang, Nano Today 10, 355 (2015).
    61 P. Cottingham and R. L. Brutchey, Chemistry of Materials 30, 6711 (2018).
    62 J. Li, H. Zhang, S. Wang, D. Long, M. Li, D. Wang, and T. Zhang, Materials 11, 717 (2018).
    63 G. Tong, L. K. Ono, and Y. Qi, Energy Technology 8, 1900961 (2020).
    64 S. Cho and S. H. Yun, Communications Chemistry 3, 1 (2020).
    65 Y. Zheng, T. Yang, Z. Fang, M. Shang, Z. Zhang, J. Yang, J. Fan, W. Yang, X. Hou, and T. Wu, Nano Research 13, 2994 (2020).
    66 B. Qiao, P. Song, J. Cao, S. Zhao, Z. Shen, D. Gao, Z. Liang, Z. Xu, D. Song, and X. Xu, Nanotechnology 28, 445602 (2017).
    67 H. C. Yoon, H. Lee, H. Kang, J. H. Oh, and Y. R. Do, Journal of Materials Chemistry C 6, 13023 (2018).
    68 Y. Zhou, Y. Yu, Y. Zhang, X. Liu, H. Yang, X. Liang, W. Xia, and W. Xiang, Inorganic Chemistry 60, 3814 (2021).
    69 S. Caicedo-Davila, R. Gunder, J. A. Marquez, S. Levcenko, K. Schwarzburg, T. Unold, and D. Abou-Ras, The Journal of Physical Chemistry C 124, 19514 (2020).
    70 J. Yin, H. Yang, K. Song, A. M. El-Zohry, Y. Han, O. M. Bakr, J.-L. Brédas, and O. F. Mohammed, The Journal of Physical Chemistry Letters 9, 5490 (2018).
    71 F. Palazon, S. Dogan, S. Marras, F. Locardi, I. Nelli, P. Rastogi, M. Ferretti, M. Prato, R. Krahne, and L. Manna, The Journal of Physical Chemistry C 121, 11956 (2017).
    72 Y.-Q. Zhou, J. Xu, J.-B. Liu, and B.-X. Liu, The Journal of Physical Chemistry Letters 10, 6118 (2019).
    73 I. Dursun, M. De Bastiani, B. Turedi, B. J. Alamer, A. Shkurenko, J. Yin, I. Gereige, A. Alsaggaf, O. F. Mohammed, and M. Eddaoudi, ChemSusChem 10, 3746 (2017).
    74 B. Wang, C. Zhang, S. Huang, Z. Li, L. Kong, L. Jin, J. Wang, K. Wu, and L. Li, ACS Applied Materials & Interfaces 10, 23303 (2018).
    75 L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu, Q. Pan, H. Liu, M. Cao, Y. Xu, and B. Sun, Langmuir 33, 12689 (2017).
    76 F. Li, Y. Liu, H. Wang, Q. Zhan, Q. Liu, and Z. Xia, Chemistry of Materials 30, 8546 (2018).
    77 L. J. Ruan, B. Tang, and Y. Ma, The Journal of Physical Chemistry C 123, 11959 (2019).
    78 Y. Tian, A. Merdasa, E. Unger, M. Abdellah, K. Zheng, S. McKibbin, A. Mikkelsen, T. Pullerits, A. Yartsev, and V. Sundström, The Journal of Physical Chemistry Letters 6, 4171 (2015).
    79 D. Meggiolaro, E. Mosconi, and F. De Angelis, ACS Energy Letters 2, 2794 (2017).
    80 S.-C. Liu, Z. Li, Y. Yang, X. Wang, Y.-X. Chen, D.-J. Xue, and J.-S. Hu, Journal of the American Chemical Society 141, 18075 (2019).
    81 L. Qiao, R. Long, and W.-H. Fang, The Journal of Physical Chemistry Letters 10, 5499 (2019).
    82 V. K. Ravi, G. B. Markad, and A. Nag, ACS Energy Letters 1, 665 (2016).
    83 R. E. Brandt, V. Stevanović, D. S. Ginley, and T. Buonassisi, MRS Communications 5, 265 (2015).
    84 J. Hieulle, S. Luo, D.-Y. Son, A. Jamshaid, C. Stecker, Z. Liu, G. Na, D. Yang, R. Ohmann, and L. K. Ono, The Journal of Physical Chemistry Letters 11, 818 (2020).
    85 X. He, Y. Qiu, and S. Yang, Advanced Materials 29, 1700775 (2017).
    86 Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, and Q. Xiong, Small Methods 1, 1700163 (2017).
    87 H. h. Fang, J. Yang, S. Adjokatse, E. Tekelenburg, M. E. Kamminga, H. Duim, J. Ye, G. R. Blake, J. Even, and M. A. Loi, Advanced Functional Materials 30, 1907979 (2020).
    88 B. R. Vale, E. Socie, A. Burgos-Caminal, J. Bettini, M. A. Schiavon, and J.-E. Moser, The Journal of Physical Chemistry Letters 11, 387 (2019).
    89 W. Li, J. Ma, H. Wang, C. Fang, H. Luo, and D. Li, Nanophotonics 9, 2001 (2020).
    90 P. W. Anderson, Physical Review 109, 1492 (1958).
    91 S.-H. Wei and S. Zhang, Physical Review B 62, 6944 (2000).
    92 P. Kent and A. Zunger, Applied Physics Letters 79, 1977 (2001).
    93 E. M. Hutter, M. C. Gélvez-Rueda, A. Osherov, V. Bulović, F. C. Grozema, S. D. Stranks, and T. J. Savenije, Nature Materials 16, 115 (2017).
    94 K. T. Munson, G. S. Doucette, E. R. Kennehan, J. R. Swartzfager, and J. B. Asbury, The Journal of Physical Chemistry C 123, 7061 (2019).
    95 C. Wolf, H. Cho, Y. H. Kim, and T. W. Lee, ChemSusChem 10, 3705 (2017).
    96 P. Adhikari, K. Kobbekaduwa, Y. Shi, J. Zhang, N. Al Abass, J. He, A. Rao, and J. Gao, Applied Physics Letters 113, 183509 (2018).
    97 C. F. Klingshirn, Semiconductor optics (Springer Science & Business Media, 2012), pp.363.
    98 H. Fröhlich, H. Pelzer, and S. Zienau, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41, 221 (1950).
    99 G. Kaur and H. N. Ghosh, The Journal of Physical Chemistry Letters 11, 8765 (2020).
    100 F. Peeters and J. Devreese, Physical Review B 31, 4890 (1985).
    101 A. Mishchenko, N. Prokof'ev, B. Svistunov, and A. Sakamoto, in Excitonic Processes In Condensed Matter (World Scientific, 2001), p. 372.
    102 M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H. J. Snaith, and A. Pucci, Materials Horizons 3, 613 (2016).
    103 S. Adachi, Journal of Applied Physics 58, R1 (1985).
    104 K. Wei, Z. Xu, R. Chen, X. Zheng, X. Cheng, and T. Jiang, Optics Letters 41, 3821 (2016).
    105 L. Huang, Z. Ge, X. Zhang, and Y. Zhu, Journal of Materials Chemistry A 9, 4379 (2021).
    106 D. M. Moore, Journal of Geological Education 35, 28 (1987).
    107 S. K. Chatterjee, Crystallography and the World of Symmetry, 43 (2008).
    108 Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, T. Izumi, S. Sajou, K. Inoue, Y. Narukawa, T. Mukai, and S. Fujita, Physica Status Solidi (a) 183, 41 (2001).
    109 S. Christodoulou, F. Di Stasio, S. Pradhan, A. Stavrinadis, and G. Konstantatos, The Journal of Physical Chemistry C 122, 7621 (2018).
    110 H.-H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even, and M. A. Loi, Science Advances 2, e1600534 (2016).
    111 C. Rodà, A. L. Abdelhady, J. Shamsi, M. Lorenzon, V. Pinchetti, M. Gandini, F. Meinardi, L. Manna, and S. Brovelli, Nanoscale 11, 7613 (2019).
    112 T. Schmidt, K. Lischka, and W. Zulehner, Physical Review B 45, 8989 (1992).
    113 H. Diab, G. Trippé-Allard, F. Lédée, K. Jemli, C. Vilar, G. Bouchez, V. L. Jacques, A. Tejeda, J. Even, and J.-S. Lauret, The Journal of Physical Chemistry Letters 7, 5093 (2016).
    114 J. Shi, H. Zhang, Y. Li, J. J. Jasieniak, Y. Li, H. Wu, Y. Luo, D. Li, and Q. Meng, Energy & Environmental Science 11, 1460 (2018).
    115 H. Huang, L. Polavarapu, J. A. Sichert, A. S. Susha, A. S. Urban, and A. L. Rogach, NPG Asia Materials 8, e328 (2016).
    116 C. Gourdon and P. Lavallard, Physica Status Solidi (b) 153, 641 (1989)

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE