簡易檢索 / 詳目顯示

研究生: 石育銓
Shih, Yu-Chuan
論文名稱: 不同氧空缺數量之WO3-X奈米線與其可見光之光催化性質
WO3-X nanowires with different quantities of oxygen vacancies and their visible-light photocatalytic properties
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 65
中文關鍵詞: WO3奈米線氧分壓氧空缺光催化
外文關鍵詞: WO3, nanowire, oxygen partial pressure, oxygen vacancy, photocatalysis
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用熱蒸鍍法以三區水平式爐管配合高載流氣體,在不使用催化劑之情況下成長出具有優良高寬比之氧化鎢奈米線,調控參數為載流氣體之種類,目的為不影響整體環境壓力及氣體流量的限制下改變氧分壓,並觀察氧化鎢奈米線產生之各種變化。共使用三種參數,(1)載流氣體使用氬氣,流量為100 sccm,氧分壓為0.02 torr,化學式為WO2.7725;(2) 載流氣體使用氧氬混合氣體(O2 50% + Ar 50%),流量為100 sccm,氧分壓為0.16 torr,化學式為WO2.81;(3) 載流氣體使用氧氣,流量為100 sccm,氧分壓為0.3 torr,化學式為WO2.838。
    三種參數製成之氧化鎢奈米線在形貌、晶格方面並無二致,三者差別在於晶格缺陷之多寡。在氧分壓介於0.02 torr及0.3 torr之間時,提高氧分壓將會降低氧空缺之數量,可以控制氧分壓來決定氧空缺之數量,但使用氧氬混合氣體時氧化鎢奈米線會產生大量表面缺陷,推測其原因為通入氧氬混合氣體會使奈米線成長過程中產生內部應力,在持溫結束後之退火會使應力釋放,奈米線晶格緩慢重新排列。
    量測三種參數之奈米線的性質後可發現:氧化鎢奈米線表面之缺陷數量對導電性及光催化表現有幫助。缺陷越多,電子在物質中移動所需之能量越低,故導電性提升。在光催化方面,缺陷能使吸附有機汙染物的效率提升進而使光催化效率提升及降低電子電洞對再結合速度,使光催化表現提升。

    In this study, we successfully synthesized tungsten oxide nanowires contain abundant of oxygen vacancies by three-zone furnace tube via thermal evaporation method without any catalyst. By alternating the oxygen pressure, the quantity of oxygen vacancies in tungsten oxide nanowires would change, therefore influence the properties of nanowires like electrical conductivity and performance of photodegradation. To learn more about the morphology and phases, we use scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). The results show that there’s no significant change in morphology and phases, only the quantities of oxygen vacancies increase when oxygen partial pressure gets lower. It can help us understand the difference of NWs with different quantities of oxygen vacancies. NWs synthesized under PO2 = 0.3 torr has better crystallinity due to the reduction of oxygen vacancies, may increase the life time of electrochromism application. NWs synthesized under PO2 = 0.02 torr & 0.16 torr with higher quantities of defects, their electrical conductivities and efficiencies of photodegradation are better than better than NWs synthesized under PO2 = 0.3 torr. Single nanowire synthesized under PO2 = 0.16 torr has a low resistivity ρ = 5.492x10-5 m-Ω; Single nanowire synthesized under PO2 = 0.16 torr has a low resistivity ρ = 9.731x10-6 m-Ω. Also, These NWs have photocatalytic performances toward methylene blue that are two times better than NWs synthesized under PO2 = 0.3 torr. They are applicable to elimination of organic pollutants in the environment.

    第一章 前言 1 1-1緒論 1 1-2 研究動機 2 第二章 文獻回顧 3 2-1 奈米材料 3 2-2 奈米材料特性 3 2-2-1小尺寸效應 3 2-2-2 表面效應 4 2-2-3 量子尺寸效應 4 2-2-4 量子穿隧效應 4 2-3 氧化鎢各項性質 5 2-3-1 氧化鎢基本性質 5 2-3-2 氧化鎢氣體感測性質 6 2-3-3 氧化鎢電性 7 2-3-4 氧化鎢光催化性質 7 2-3-5 氧化鎢電致變色性質 8 2-4 氧化鎢奈米線合成方法 9 2-4-1 水熱法 9 2-4-2 化學氣相沉積法 10 2-4-3 熱蒸鍍法 10 2-4-4 模板法 10 2-4-5 脈衝雷射蒸鍍法 11 第三章 實驗方法 12 3-1 實驗大綱 12 3-2實驗流程 12 3-2-1試片處理 12 3-2-2 製備氧化鎢奈米線 13 3-2-3 結構分析及性質量測 14 3-3 基板與藥品 18 3-3-1基板 18 3-3-2藥品 18 3-4 結構分析與各項性質量測儀器介紹 18 3-4-1掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 18 3-4-2 X光繞射儀 (X-RAY Diffractometer, XRD) 19 3-4-3能量色散X光光譜 (Energy-dispersive X-ray spectroscopy, EDS) 19 3-4-4化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis, XPS) 20 3-4-5 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 20 3-4-6 電子能量損失能譜 (Electron energy loss spectroscopy, EELS) 21 3-4-7 電性量測儀器 21 3-4-8 太陽光模擬器 21 3-4-9 紫外-可見分光光度法 (Ultraviolet–visible spectroscopy, UV-Vis) 21 第四章 結果與討論 23 4-1 實驗架構 23 4-2 參數調控 24 4-2-1 生長溫度 24 4-2-2 環境壓力 26 4-2-3前驅物量 28 4-2-4 反應時間 30 4-2-5 載流氣體 31 4-2-6 氧分壓 31 4-3 生長機制 34 4-4 成分鑑定與結構分析 36 4-5 氧空缺分析 43 4-6 電性量測 52 4-7 光催化性質 56 第五章 結論 60 參考文獻 61

    1. Woodward P. M., Sleight A. W., and Vogt T., (1997). "Ferroelectric Tungsten Trioxide." Journal of Solid State Chemistry 131(1): 9-17.
    2. Zheng H., Ou J. Z., Strano M. S., Kaner R. B., Mitchell A., and Kalantar-zadeh K., (2011). "Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications," Advanced Functional Materials 21: 2175-2196.,
    3. Xu C., Tamaki J., Miura N., and Yamazoe N., (1991). "Grain size effects on gas sensitivity of porous SnO2-based elements." Sensors and Actuators B: Chemical 3(2): 147-155.
    4. Chakrapani V., Brier M., Puntambekar A., and DiGiovanni T., (2015). "Modulation of stoichiometry, morphology and composition of transition metal oxide nanostructures through hot wire chemical vapor deposition." Journal of Materials Research 31(1): 17-27.
    5. González-Borrero, P. P., Sato, F., Medina A. N., Baesso M. L., Bento A. C., Baldissera G., Persson C., Niklasson G. A., Granqvist C. G., and Ferreira da Silva A., (2010). "Optical band-gap determination of nanostructured WO3 film." Applied Physics Letters 96(6).
    6. Watanabe H., Fujikata K., Oaki Y., and Imai H., (2013). "Band-gap expansion of tungsten oxide quantum dots synthesized in sub-nano porous silica." Chemical Communications 49(76): 8477-8479.
    7. Huang Z. F., Song J., Pan L., Zhang X., Wang L., and Zou J. J., (2015). "Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy." Advanced Materials 27(36): 5309-5327.
    8. Fukushi D., Sasaki A., Hirabayashi H., and Kitano M., (2017). "Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase." Microelectronics Reliability 79: 1-4.
    9. Firdaus I., Purwanto A., and Widiyandari H., (2015). "The Immobilization of Pt/WO3 on the Glass Substrate for Methylene Blue Degradation." Advanced Materials Research 1112: 188-193.
    10. Platt J. R., (1961). "Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field," The Journal of Chemical Physics 34: 862-863.
    11. Huang K., Jia J., Pan Q., Yang F., and He D., (2007). "Optical, electrochemical and structural properties of long-term cycled tungsten oxide films prepared by sol–gel," Physica B: Condensed Matter 396: 164-168.
    12. Ashrit P. V., Bader G., and Truong V.-V., (1998). "Electrochromic properties of nanocrystalline tungsten oxide thin films," Thin Solid Films 320(2): 324-328.
    13. Yuan, H.-J., Chen Y.-Q., Yu F., Peng Y.-H., He X.-W., Zhao D., and Tang D.-S., (2011). "Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires." Chinese Physics B 20(3).
    14. Song H., Li Y., Lou Z., Xiao M., Hu L., Ye Z., and Zhu L., (2015). "Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities." Applied Catalysis B: Environmental 166-167: 112-120.
    15. Baek Y., and Yong K., (2007). "Controlled Growth and Characterization of Tungsten Oxide Nanowires Using Thermal Evaporation of WO3 Powder." The Journal of Physical Chemistry C 111(3): 1213-1218.
    16. Lai W.-H., Shieh J., Teoh L.-G., and Hon M.-H., (2006). "Fabrication of one-dimensional mesoporous tungsten oxide." Nanotechnology 17(1): 110-115.

    17. Baserga A., Russo V., Di Fonzo F., Bailini A., Cattaneo D., Casari C. S., Li Bassi A., and Bottani, C. E.,(2007). "Nanostructured tungsten oxide with controlled properties: Synthesis and Raman characterization." Thin Solid Films 515(16): 6465-6469.
    18. Gu W., Choi H., and Kim K., (2006). "Universal approach to accurate resistivity measurement for a single nanowire: Theory and application." Applied Physics Letters 89: 253102-253102.
    19. Zhou J., Ding Y., Deng S. Z., Gong L., Xu N. S., and Wang Z. L., (2005). "Three-Dimensional Tungsten Oxide Nanowire Networks." Advanced Materials 17(17): 2107-2110.
    20. Wang Y., Cai J., Wu M., Chen J., Zhao W., Tian Y., Ding T., Zhang J., Jiang Z., and Li X., (2018). "Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction." Applied Catalysis B: Environmental 239: 398-407.
    21. Yadav, P. V. K., Reddy Y. A. K., Ajitha B., Minnam R., and Vasudeva R., (2020). "Oxygen partial pressure dependent UV photodetector performance of WO3 sputtered thin films." Journal of Alloys and Compounds 816.
    22. Yang P., and Lieber C. M., (2011). "Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites." Journal of Materials Research 12(11): 2981-2996.
    23. Chueh Y. L., Lai M. W., Liang J. Q., Chou L. J., and Wang Z.  L., (2006). "Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process." Advanced Functional Materials 16(17): 2243-2251.
    24. Ma Y.-R., Lin C.-M., Yeh C.-L., and Huang R.-T., (2005). "Synthesis and characterization of one-dimensional WO2 nanorods." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23(5).
    25. Xie F. Y., Gong L., Liu X., Tao Y. T., Zhang W. H., Chen S. H., Meng H., and Chen J., (2012). "XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment." Journal of Electron Spectroscopy and Related Phenomena 185(3-4): 112-118.
    26. Fleisch T. H. and G. J. Mains, (1982). "An XPS study of the UV reduction and photochromism of MoO3 and WO3." The Journal of Chemical Physics 76(2): 780-786.
    27. Arnold M. S., Avouris P., Pan Z., W., and Wang Z. L., (2003). "Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts." The Journal of Physical Chemistry B 107(3): 659-663.
    28. Gu W., Choi H., and Kim K., (2006). "Universal approach to accurate resistivity measurement for a single nanowire: Theory and application." Applied Physics Letters 89(25).
    29. Zhang J., Zhang H., Liu L., Li F., and Wang S., (2018). "W18O49 nanorods: Controlled preparation, structural refinement, and electric conductivity." Chemical Physics Letters 706: 243-246.
    30. Ponzoni A., Russo V., Bailini A., Casari C. S., Ferroni M., Li Bassi A., Migliori A., Morandi V., Ortolani L., Sberveglieri G., and Bottani C. E., (2011). "Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles." Sensors and Actuators B: Chemical 153(2): 340-346.
    31. Zhang J., Liu Z., and Liu Z., (2016). "Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting." ACS Applied Materials & Interfaces 8(15): 9684-9691.
    32. Zhang N., Li X., Ye H., Chen S., Ju H., Liu D., Lin Y., Ye W., Wang C., Xu Q., Zhu J, Song L., Jiang J., and Xiong Y., (2016). "Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation." Journal of the American Chemical Society 138(28): 8928-8935.
    33. Wang G., Ling Y., Wang H., Yang X., Wang C., Zhang J. Z., and Li Y., (2012). "Hydrogen-treated WO3 nanoflakes show enhanced photostability." Energy & Environmental Science 5(3).
    34. Li Y., Tang Z., Zhang J., and Zhang Z., (2016). "Defect Engineering of Air-Treated WO3 and Its Enhanced Visible-Light-Driven Photocatalytic and Electrochemical Performance." The Journal of Physical Chemistry C 120(18): 9750-9763.
    35. Wang Y., Cai J., Wu M., Chen J., Zhao W., Tian Y., Ding T., Zhang J., Jiang Z., and Li X., (2018). "Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction." Applied Catalysis B: Environmental 239: 398-407.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE