簡易檢索 / 詳目顯示

研究生: 錢敬峰
Chian, Jing-Fong
論文名稱: 添加鐵離子對由Boehmite製備之 q–Al2O3 微粉燒結行為的影響
Effect of Fe3+ Addition on the Sintering Behavior of q–Al2O3 Fine Powder Derived from Boehmite
指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 97
中文關鍵詞: 相轉換氧化鋁
外文關鍵詞: phase trasformation, alumnina
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    以軟水鋁石(boehmite)作為前導物來生產氧化鋁微粉時,其相轉換歷程,一般為: boehmite g d q a (最終穩定相)。由於 q–Al2O3 相轉換為 a–Al2O3 過程中,常伴隨著a–Al2O3 晶粒的急速成長,因此也喪失了其毫微米粒子的特性。本研究以結晶化學的方法,亦即添加 Fe3+ 離子來錯開晶粒成長與相轉換溫度,希望 Fe3+ 離子進入氧化鋁結構中,改變其結構能( structure/lattice energy ),進而改變 q 至 a 相氧化鋁相轉換溫度,期望在粉末燒結期間,能錯開 晶粒快速成長溫度與相轉換溫度,使得氧化鋁晶粒在燒結過程中,不僅晶粒成長控制容易,且更可促進燒結緻密。
    本研究以商用boehmite為起始原料,添加1 mole% 及2.5 mole%的Fe3+ 離子,接著以1050℃ 持溫1小時得到所需之燒結用粉末,其主相為 q–Al2O3 ,晶粒控制在約22 nm 左右。粉末經去凝聚後,以40 MPa單軸乾壓成形,再以200 MPa 進行CIP (cold isostatic pressing) 均壓成形得所需之生坯。分別以 1100℃、1200℃、1300℃、1400℃、1500℃均不持溫進行燒結;並藉由熱差分析、X光繞射分析、燒結收縮量測、微結構觀察、孔隙大小分佈量測,深入探討不同Fe3+ 離子添加量對燒結情形的影響。分析研究成果得到以下結論:
    1. 添加鐵離子會使 q 至 a 氧化鋁相轉換溫度降低,且隨著添加量的增加有愈下降的趨勢。
    2. 在相同的燒結溫度下,隨著鐵離子添加量的增加,燒結體緻密化程度也相對較高,但對晶粒成長的控制並不明顯,不過在相對密度近 97% 時,晶粒大小仍可控制在 1 mm 以下。
    3. 因鐵離子的添加,不僅可使 q 至 a 氧化鋁相轉換溫度降低,更促進相轉換的發生,因而改變了燒結收縮速率,使其較易達到 a 氧化鋁 燒結緻密。

    ABSTRACT
    In the process of phase transformation from boehmite to a-Al2O3, the main phases are: boehmite g-Al2O3 d-Al2O3 q-Al2O3 a-Al2O3. Because the phase transformation of q-Al2O3 a-Al2O3 is accompanied with growth of a-Al2O3 crystallites, it will lose the sub micron - particle’s characteristics. The study hopes to change aluminum’s structure energy and the q to a phase transformation temperature by adding small amount of iron ion to alumina lattice site that won’t change its structure, and at the same time make the rapid grain growth occurred at different temperature, in order to control the growth of a-Al2O3 crystallites and enhance the sintering activity.
    The starting material was commercial boehmite with addition of 1 mole% and 2.5 mole% Fe3+. After calcining at 1050℃/1 h, raw powder transferred to q phase and its crystallite size is about 22 nm. After de-agglomeration, they were first uniaxially pressed at 40 MPa and then cold isostatically pressed at 200 MPa. To study microstructure evolution during sintering of the compact, heat treatment was carried out at temperature from 1000℃ to 1500℃. Differential thermal analyzer (DTA), X-ray diffractometer, scanning electron microscope (SEM), and mercury penetration porosimeter were used to characterize their thermal behavior, the quantity of phase transformation, particle size, pore size distribution, density, and the changes of microstructure. Conclusions of this study are :
    1. By addition of Fe3+, it can decrease the q to a phase transformation temperature. The more amount of Fe3+ addition, the lower the transformation temperature and the faster the transformation rate.
    2. At the same sintering temperature. The more amount of Fe3+ addition, the higher densification of sintered bulks. But crystallite growth was still fast. Relative density reached 97%, and crystallite size was <1mm.
    3. With the addition of Fe3+, it can not only decrease the q to a phase transformation temperature but also enhance the sintering shrinkage rate to achieve densification of a-Al2O3.

    總 目 錄 致謝---------------------------------------------------------------------------------------------- Ⅰ中文摘要---------------------------------------------------------------------------------------- Ⅱ英文摘要---------------------------------------------------------------------------------------- Ⅳ 總目錄------------------------------------------------------------------------------------------- ⅥList of Table------------------------------------------------------------------------------------- Ⅷ List of Figures----------------------------------------------------------------------------------- Ⅸ 第一章 緒論----------------------------------------------------------------------------------- 1 1-1 前言----------------------------------------------------------------------------------- 1 1-2研究目的------------------------------------------------------------------------------ 1 第一章 相關文獻回顧與整理-------------------------------------------------------------- 3 2-1 氧化鋁特性--------------------------------------------------------------------------- 3 2-2 q 至 a 氧化鋁相轉換---------------------------------------------------------------- 3 2-3 添加物對相轉換的影響----------------------------------------------------------- 11 2-4 燒結機制--------------------------------------------------------------------------- 19 2-4-1 凝聚體對燒結的影響--------------------------------------------------- 19 2-4-2 孔洞對燒結的影響-------------------------------------------------------- 22 2-4-3 添加物對燒結的影響----------------------------------------------------- 24 2-4-4 傳統燒結-------------------------------------------------------------------- 27 2-4-5 微粉之燒結----------------------------------------------------------------- 30 第二章 實驗方法與步驟 3-1 實驗起始材料----------------------------------------------------------------------- 34 3-2 實驗流程---------------------------------------------------------------------------- 34 3-3 粉末的性質測定------------------------------------------------------------------- 37 3-3-1 熱差分析-------------------------------------------------------------------- 37 3-3-2 X光繞射分析------------------------------------------------------------- 37 3-4燒結行為測定----------------------------------------------------------------------- 40 3-4-1 燒結收縮 40 3-4-2 密度測量 42 3-4-3 孔隙大小分佈量測 42 3-4-4 微結構觀察 43 第四章 結果與討論------------------------------------------------------------------------- 44 4-1 粉末分析--------------------------------------------------------------------------- 44 4-1-1 煅燒溫度決定-------------------------------------------------------------- 44 4-1-2 晶格常數-------------------------------------------------------------------- 47 4-1-3 粉末外型觀察-------------------------------------------------------------- 52 4-2 燒結行為測定 57 4-2-1 燒結收縮 57 4-2-2 密度測量 57 4-2-3 孔隙大小分佈 60 4-2-4 微結構觀察----------------------------------------------------------------- 60 4-3 綜合討論 64 4-3-1 熱差分析與燒結收縮----------------------------------------------------- 64 4-3-2 相轉換與晶粒大小-------------------------------------------------------- 70 4-3-3 孔隙大小分佈與燒結收縮 73 4-3-4 不同添加量微結構變化-------------------------------------------------- 75 4-3-5 添加鐵離子對燒結行為的影響----------------------------------------- 82 第五章 結論------------------------------------------------------------------------------------ 85 Reference-------------------------------------------------------------------------------------- - 87

    Reference
    1. J. S. Reed, Introduction of the Principles of Ceramic Processing, John Wiley and
    Sons, New York, (1995).
    2. R. Morrell, Handbook of Properties of Technical and Engineering Ceramics, Part 2 Data Reviews-Selection 1:High-Alumina Ceramic, National Physical Laboratory, HMSO, London (1987).
    3. K. Wefers and G. M. Bell, “Oxides and Hydroxides of Aluminum,” Alcoa Research Lab., Technical Paper No. 19 (1972).
    4. F. J. Ewing, “The Crystal Structure of Lepidocrocite,” J. Chem. Phys., 3, 420-454 (1935).
    5. M. K. B. Day and V. J. Hill, “Thermal Transformation of the Aluminas and Their Hydrates,” J. Phys. Chem., 57, 946-950 (1953).
    6. B. C. Lippens and J. H. de Boer, “Study of Phase Transformations during Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction,” Acta Cryst., 17, 1312-1321 (1964).
    7. S. Rajendran, “Production of Ultrafine Alpha Alumina Powders and Fabrication of Fine Grained Strong Ceramics,” J. Mat. Sci., 29, 5664 (1994).
    8. 溫惠玲,由bemire製得之氧化鋁粉末之 q 至 a-Al2O3 相變與燒結,國立成功大學資源工程研究所,碩士論文,中華民國87年8月。
    9. 羅慧珊,添加 a-Al2O3 晶種對Boehmite 合成奈米級氧化鋁粉末之 q 至 a-Al2O3 相轉換影響之研究,國立成功大學資源工程研究所,碩士論文,中華民國88年6月。
    10. 張俊龍,奈米級氧化鋁粉末 q 至 a 的相轉換活化能研究,國立成功大學資源工程研究所,碩士論文,中華民國91年6月。
    11. E. Husson and Y. Repelin, “Structure Studies of Transition Aluminas. Theta Alumina,” Eur. J. Solid State Inorg. Chem., T. 33, 1223-1231 (1996).
    12. J. A. Kohn, G. Katz, and J. D. Border, “b-Ga2O3 and Its Alumina Isomorph, q-Al2O3,” Am. Miner., 42, 398-408, (1957).
    13. L. D. Hart, Editor, Alumina Chemical : Science and Technology Handbook, Am. Ceram. Soc., Columbus, Ohio, (1990).
    14. F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina,” J. Am. Ceram. Soc., 65, 442-448, (1982).
    15. J. L. McArdle, Seeding with Ferric-Oxide for Enhanced Transformation and Micorstrucutre Development in Boehmite-Derived Alumina, Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania, (1989).
    16. W. A. Yarbrough and R. Roy, “Microstructural Evolution in Sintering of AlOOH Gels,” J. Mater. Res., 2 [4] 494-515, (1987).
    17. M. Kumagai and G. L. Messing, “Enhanced Densification of Boehmite Sol-Gels by Alpha-Alumina Seeding,” J. Am. Ceram. Soc., 67 [11] C-230 – C-231, (1984).
    18. R. A. Shelleman, G. L. Messing, and M. Kumagai, “Alpha Alumina Transformation in Seeded Boehmite Gels,” J. Non-Cryst. Solids, 82, 277-285, (1986).
    19. R. B. Bagwell and G. L. Messing, “Effect of Seeding and Water Vapor on the Nucleation and Growth of a-Al2O3 from g-Al2O3,” J. Am. Ceram. Soc., 82 [4] 825-832, (1999).
    20. J. L. McArdle and G. L. Messing, “Seeding with g-Al2O3 for Transformation and Microstructure Control in Boehmite-Derived a-Alumina,” J. Am. Ceram. Soc., 69 [5], 98–101, (1986)
    21. Y. Satio, T. Takei, S. Hayashi, A. Yasumori, and K. Okada, “Effects of Amorphous and Crystalline SiO2 Additives on g-Al2O3 to a-Al2O3 Phase Transformations,” J. Am. Ceram. Soc., 81[8] 2197-2200 (1998).
    22. Y. W. Rhee, H. Y. Lee, and S. J. L. Kang, “Diffusion Induced Grain-Boundary Migration and Mechanical Property Improvement in Fe-doped Alumina,” J. Europ. Ceram. Soc., 23, 1667-1674 (2003).
    23. T. Tsuchida, R. Furuichi, and T. Ishii, “Kinetics of the Dehydration of Boehmite Prepared under Different Hydrothermal Conditions,” Thermochim. Acta, 39 [2] 103-115 (1980).
    24. M. Pijolat, M. Dauzat, and M. Soustelle, “Influence of Additives and Water Vapor on the Transformation of Transition Aluminas into Alpha Alumina,” Thermochim Acta, 122, 71-77, (1987).
    25. Z. Hrabe, S. Komarneni, L. Pach, and R. Roy, “The Influence of Water Vapor on Thermal Transformations of Boehmite,” J. Mater. Res. 7 [2] 444-449 (1992).
    26. 黃俊琪,添加鐵離子對氧化鋁 q 至 a 相轉換之影響,國立成功大學資源工程研究所,碩士論文,中華民國89年6月。
    27. 林佳慧,添加鉻離子對 q a-Al2O3 相轉換之影響,國立成功大學資源工程研究所,碩士論文,中華民國89年7月。
    28. T. Tsuchida, R. Furuichi, T. Ishii and K. Itoh, “The Effect of Cr3+ and Fe3+ Ions on the Transformation of Different Alumina Hydroxides to a-Al2O3,” Thermochim. Acta., 64, 337-353, (1983).
    29. D. E. Niesz and R. B. Bennett, “Structure and Properties of Agglomerates,” in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr. and L. L. Hench, Wiley, New York (1978).
    30. J. G. Li and X. Sun, “Synthesis and Sintering Behavior of a Nanocrystalline a-Alumina Powder,” Acta Mater, 48, 3103-3112, (2000).
    31. J. W. Halloran, “Agglormerates and Agglomeration in Ceramic Processing,” in Ultrastructure Processing of Ceramics, Glass, and Composites, Eds. L. L. Hench and D. R. Ulrich, Wiley, New York, (1984).
    32. H. Rumpf and H. Schubert, “Adhesion Forces in Agglomeration Processes,” in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr., and L. L. Hench, Wiley, New York, (1978).
    33. R. Pampuch and Haberko, “Agglomerate in Ceramic Micropowders and their Behavior on Cold Pressing and Sintering,” in Material Science Monograph, Vol. 16, Ceramic Powder, Edited by P. Vincernzini, (1983).
    34. R. T. Tremper and R. S. Gordon, “Agglomeration Effects on the Sintering of Alumina Powders Prepared by Autoclaving Aluminum Metal,” in Ceramic Processing before Firing, Eds. G. Y. Onoda, Jr. and L. L. Hench, Wiley, New York (1978).
    35. W. D. Kingery and B. Francois, “Sintering of Crystalline Oxides, I. Interactions between Grain Boundaries and Pores,” p. 471 in Sintering and Related Phenomena. Eds. G. C. Kuczynske, N .A. Hooton, and G. F. Gibbon, Gordon Breach, New York, (1967).
    36. R. L. Coble, “Diffusion Sintering in the Solid State,” pp. 147-163 in Kinetics of High-Temperature Process, Ed. W. D. Kingery, MIT Press, Cambridge, MA, and John Wiley and Sons, New York, (1959).
    37. F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2] 83-88 (1984).
    38. J. Zheng and J. S. Reed, “Effect of Particle Packing Characteristics on Solid-State Sintering,” J. Am. Ceram. Soc., 72 [5] 810-817 (1989).
    39. M. F. Ashby, “A First Report on Sintering Diagrams,” Acta Metal., 22, 275-289 (1974).
    40. H. P. Cahoon and C. J. Christensen, “Sintering and Grain Growth of Alpha-Alumina,” J. Am. Ceram. Soc., 39, 337-344, (1956).
    41. P. L. Chen and I. W. Chen, “Sintering of fine Oxide Powders : Ⅱ, Sintering Mechanisms,” J. Am. Ceram. Soc., 80 [3] 637-645 (1997).
    42. C. Legros, C. Carry, P. Bowen, and H. Hofmann, “Sintering of a Transition Alumina: Effect of Phase Transformation, Powder Characteristics and Thermal Cycle,” J. Europ. Ceram. Soc., 19, 1967-1978, (1999).
    43. Phase Equilibria Diagrams for Ceramists, Vol.Ⅰ, Am. Ceram. Soc., Ohio, USA, 2093-2096.
    44. Y. Wakao and T. Hibino, Nagoya Kogyo Gijustsu Shikensho Hokoku, 11, 588-597. (1962)

    下載圖示 校內:立即公開
    校外:2003-08-08公開
    QR CODE