| 研究生: |
陳暉長 Chen, Hwe-Zhong |
|---|---|
| 論文名稱: |
電子封裝模具以黏著力作為設計參數之可行性研究 Feasibility of Using Adhesion Force as a Parameter for IC Package Mold Design |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 223 |
| 中文關鍵詞: | 退冰時間 、模具表面鍍層 、黏著效應 、封膠材料 、IC封裝 |
| 外文關鍵詞: | Mold surface coating, EMC, IC packaging, Defrosting period, Adhesion effects |
| 相關次數: | 點閱:134 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電子IC封裝製程中,封膠材料(EMC;Epoxy Molding Compound)在熟化成型過程中會與IC封裝模具表面產生黏著的現象,稱為黏著效應(Adhesion Effects),而此黏著效應會造成IC成品在脫模過程的黏模現象,影響產品的品質與可靠度,甚至可能會破壞產品,導致封膠失敗、生產良率降低等結果。所以如何在不影響現有模具設計的前題下,能夠藉由適當的表面處理以及鍍膜選擇,來有效降低黏著效應的影響,而改善封裝生產線產能,是目前產業界及研究單位所重視的主題。
本研究將利用本實驗室所發展完成的黏著強度量測技術與黏模力檢測設備,配合一組最佳製程條件,以黏著力作為設計參數,針對九種不同的模具表面鍍層進行一系列的正向與剪向黏模力測試,找出最有效的鍍層,並得知黏模力的大小,且進行確認實驗以比較其結果,檢測實驗結果的重現性與準確性,看看若以黏著力作為設計參數對封裝模具而言是否可行。
同時,本論文也將利用此組最佳製程參數進行幾百模次的長時效連續實驗,觀察黏模力的變化趨勢,並找出最適當的清模時機,以及了解造成黏模力增大的原因,才能確實掌握清模時機,縮短清模次數與清模時間,進而增加產能,減少因黏著效應所產生的不良影響。
本論文的研究重點還有探討封膠材料EMC在不同的退冰回溫時間下對黏模力產生的影響,希望能了解EMC受到溫濕度影響的程度與黏模力變化趨勢之間的關聯性,因此針對EMC易受溫溼度影響的特性,以不同回溫時間的EMC作為控制因子去進行黏模力的測試,觀察黏模力的變化趨勢,並定義出EMC最佳的使用時間。
In integrated circuit (IC) packaging, when epoxy molding compound (EMC) is filling the mold cavity and cured in the mold, adhesion effects occurs in the interface between EMC and mold surface. Adhesion effects can cause many problems. For example, too large an adhesion force may damage an IC during ejection and causes the package to fail and thus lower the yield rate and reliability. To get rid of the mold adhesion problems, improving the mold design and applying suitable surface treatments such as mold surface coating are the common approaches. Applying suitable surface coating approach is a more popular and practical approach. How to reduce the mold adhesion force and improve products yield rate are the main issues for packaging.
This research uses a semi-automatic EMC adhesion force test instrument that had been developed and fabricated to measure normal and shear adhesion force between the mold surface and EMC. By measuring the adhesion force, one can judge how much does a specific type of surface treatment help in reducing the amount of mold adhesion force. One will use this instrument to measure the magnitude of adhesion force between EMC and nine kinds of various mold surface coating. And determine the most effectiveness of mold coating. This paper also discuss the issue of successive normal force test. One will use the most effectiveness of mold coating to execute the continuous normal adhesion experiment. The variation of normal force during successive molding test can be used to predict the time for mold cleaning. By wanting the total number of shots when the normal force begins to rise, one can accurately predict the number of shots for a specific kind of mold surface coating to be cleaned.
This paper also describes that effects of defrosting period on mold adhesion force of EMC. Defrosting is a process to increase the frozen EMC temperature to room temperature and stay at room temperature for some time period before molding. It is found by molding engineers that increased defrosting time period will increase the frequency of mold cleaning. But there has been no quantitative description on how much mold adhesion force increase during the defrosting process. One can use a semi-automatic EMC adhesion force test instrument to evaluate the effects of defrosting period on mold adhesion force of EMC. By measuring the adhesion force, one can quantify how much adhesion force exists between EMC and the mold surface under different defrosting periods. The influence of moisture during defrosting on the adhesion force is also discussed. Finally, one can determine the best defrosting period of EMC.
[1] Loos, A. C., and G. S. Springer, “Curing of the Epoxy Matrix Composites,” J. Comp. Mat., 135, (1983).
[2] Springer, G. S., “Resin Flow During the Curing of Fiber Reinforced Composites,” J. Comp. Mat., 16, 400(1982).
[3] Gonzalez, U. F., S. F. Shen, and C. Cohen, “Rheological Characterization of Fast-Reacting Thermosets Through Spiral Flow Experiments,” Polym. Eng. Sci., 32, 172-181(1992).
[4] Frutiger, R. L., “The Effect of Flow on Cavity Surface Temperatures in Thermoset and Thermoplastic Injection Molding,” Ploym. Eng. Sci., 26, 243-254(1986).
[5] Lee, C. C., and C. L. Tucker III, “Flow and Heat Transfer in Compression Mold Filling,” J. Non-Newtonian Fluid Mech., 245-264(1987).
[6] Darvin R. Edwards, K. Gail Heinen, Steven K. Groothuis, Jesus E. Martinez, “ Shear Stress Evaluation of Plastic Packages,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 12, no. 4, pp. 618-627 (1987).
[7] Samuel Kim, “The Role of Plastic Package Adhesion in Performance,” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, vol. 14, no. 4, pp. 809-295 (1991).
[8] Minjin Ko, Myungwhan Kim, Dongsuk Shin, Yongjoon Park, Myungsun Moon and Inhee Lim, “Investigation on the Effect of Molding Compounds on Package Delamination,” 1997 Electronic Components and Technology Conference, pp. 1242-1247 (1997).
[9] Naotaka Tanaka, Makoto Kitano, Tetsuo Kumazawa, Asao Nishimura, “Evaluation IC-Package Interface Delamination by Considering Moisture-Induced Molding-Compound Swelling,” IEEE Transaction on Components and Packaging Technology, vol. 22, no. 3, pp. 426-432 (1999).
[10] T. Scherban, B. Sun, J. Blaine, C. Block, B. Jin and E. Andideh, “Interfacial Adhesion of Copper-Low k Interconnects,” 2001 IEEE Interconnect Technology Conference, pp. 257–259 (2001).
[11] R. Balkova, S. Holcnerova, V. Cech, “Testing of Adhesion for Bonding of Polymer Composites,” International Journal of Adhesion & Adhesives, vol. 22, pp. 291-295 (2002).
[12] Terry L. Gordon, Martin E. Fakley, “The Influence of Elastic Modulus on Adhesion to Thermoplastics and Thermoset Materials,” International Journal of Adhesion & Adhesives, vol. 23, pp. 95-100 (2003).
[13] Steven Murray, Craig Hillman, and Michael Pecht, “ Environmental Aging and Deadhesion of Siloxane-Polyimide-Epoxy Adhesive,” IEEE Transactions on Components and Packaging Technology, vol. 26, no. 3, pp. 524-531 (2003).
[14] 張祥傑, “微材料測試系統之設計與製作,” 國立成功大學機械工程研究所碩士論文(1999).
[15] 王俊祥, ”電子封裝黏模效應之量測技術開發與研究,” 國立成功大學機械工程研究所碩士論文(2000).
[16] 莊俊華, ”IC構裝黏模測試機之設計與製造,” 國立成功大學工程科學研究所碩士論文(2001).
[17] 朱言主, “IC封裝模具黏著效應之研究,” 國立成功大學工程科學研究所碩士論文 (2002).
[18] Masaki Yoshii, Yoshihiro Mizukami and Hideo Shoji, “Evaluation Technologies on Moldability of Epoxy Molding Compounds for Encapsulation of Semiconductors,” 日立化成, no. 40, pp. 13-20 (2003).
[19] Shyang-Jye Chang and Sheng-Jye Hwang, “Design and Fabrication of an IC Encapsulation Mold Adhesion Force Tester,” IEEE Transaction on Electronics Packaging Manufacturing, vol. 26, no. 4, pp. 426-432 (1999).
[20] 林俊宏, “EMC與金屬介面剪向黏著力試驗機台之研發,” 國立成功大學工程科學研究所碩士論文 (2003).
[21] 黃勁華, “EMC與金屬介面剪向黏著力試驗機台之設計與改良,” 國立成功大學工程科學研究所碩士論文 (2004).
[22] 張祥傑, “IC封裝年模力之量測與分析,” 國立成功大學機械工程學系博士論文 (2004).
[23] 李文宏, “IC封裝材料對模具正向及剪向黏著力量之研究,” 國立成功大學工程科學研究所碩士論文 (2005).
[24] “Test Method for Measurement of Adhesive Strength Between Leadframes and Molding Compounds,” STD. SEMI G69-0996, (1996).
[25] “Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading,” STD. ASTM D1002-94.
[26] “Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds,” STD. ASTM D1062-96.
[27] “Standard Test Method for Tensile Properties of Adhesive Bonds,” STD. ASTM D897-95a.
[28] “Standard Test Method for Strength Properties of Metal-to-Metal Adhesives by Compression Loading (Disk Shear),” STD. ASTM D2182-72.
[29] “Standard Recommended Practice for Determining the Strength of Adhesively Bonded Plastic Lap-Shear Sandwich Joint in Shear by Tension Loading,” STD. ASTM D3164-73.
[30] B. A. Chapman, H. D. DeFord, G. P. Wirtz and S. D. Brown, in: Technology of Glass, Ceramic, or Glass-Ceramic to Metal Sealing, W. E. Moddeman, C. W. Merten and D. P. Kramer, MD-Vol. 4, pp. 77-87. American Society of Mechanical Engineers, New York (1987).