簡易檢索 / 詳目顯示

研究生: 蔡書婷
Tsai, Shu-Ting
論文名稱: 鈷矽複合奈米粒子之製備與特性
Preparation and Characterization of Co-Si Composite Nanoparticles
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 複合奈米粒子
外文關鍵詞: composite nanoparticle
相關次數: 點閱:57下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以熱裂解法合成兼具磁性與螢光特性的鈷-矽複合奈米粒子,並探討其粒徑、結構、組成、磁性、與光學性質。首先製備出矽奈米粒子,然後以其作為晶種,加入含氯化鈷及油酸與油胺的辛醚溶液中,在280 oC下反應3小時,即可形成鈷-矽複合奈米粒子。由穿透式電子顯微鏡(TEM)得知其平均粒徑為8.9+-2.2nm。由X光繞射(XRD)、電子繞射分析、化學分析電子光譜儀(XPS)、及能量分散光譜儀(EDS)得知其結構與組成。由超導量子干涉磁化儀(SQUID)量測其飽和磁化量(Ms)、殘留磁化量(Mr)與矯頑磁力(Hc),證實接近超順磁性。以紫外光/可見光(UV/Vis)吸收光譜儀與螢光光譜儀(PL)確認此複合奈米粒子具有矽奈米粒子的光學特性,其最大吸收峰約在300 nm,能隙值4.13 eV,且最大放光波長約為350 nm。

    In this thesis, the Co-Si composite nanoparticles with magnetic and photoluminescence properties were prepared by thermal decomposition method. Their size, structure, composition, magnetic and optical properties were investigated. Silicon nanoparticles were synthesized as seeds first, and then added into the dioctyl ether solution containing CoCl2, oleic acid and oleyl amine. After reaction at 280oC for 3 h, Co-Si composite nanoparticles were formed. The resultant composite nanoparticles had a mean diameter of 8.9+-2.2nm by the analysis of transmission electron microscopy (TEM). Their structure and composition were characterized by X-ray diffraction (XRD), electron diffraction pattern, energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). Their saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) were measured by the superconducting quantum interference device (SQUID) magnetometer, revealing they were nearly superparamagnetic. Furthermore, the analyses of ultraviolet/visible (UV/Vis) and fluorescence (PL) spectra revealed that they remained the optical property of Si nanoparticles. The maximum absorption occurred at about 300 nm, corresponding to the band gap of 4.13 eV, and the maximum emission wavelength was about 350 nm.

    中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 總目錄…………………………………………………………………Ⅲ 圖目錄…………………………………………………………………Ⅴ 表目錄…………………………………………………………………Ⅶ 第一章 緒論 1.1半導體材料…………………………………………………………1 1.1.1 半導體材料簡介………………………………1 1.1.2 量子點與量子侷限效應………………………4 1.1.3 量子點的應用…………………………………8 1.2矽奈米材料…………………………………………………………13 1.2.1 矽奈米材料光學的發展………………………13 1.2.2 矽奈米粒子的製備……………………………18 1.3鈷奈米材料………………………………………………………23 1.3.1 鈷奈米材料簡介………………………………23 1.3.2 鈷奈米粒子的製備……………………………24 1.4研究動機與目的…………………………………………………25 第二章 理論部分 2.1發光原理………………………………………………………26 2.1.1 半導體的光吸收……………………………26 2.1.2 直接能隙與間接能隙半導體………………29 2.1.3 半導體發光現象……………………………32 2.1.4 間接能隙材料矽的發光……………………33 2.2磁性理論………………………………………………………34 2.2.1 磁性材料與磁滯曲線………………………34 2.2.2 磁性與粒徑的關係…………………………37 第三章 實驗部分 3.1藥品、儀器與材料…………………………………………40 3.1.1 藥品…………………………………………40 3.1.2 儀器…………………………………………41 3.1.3 材料………………………………………… 42 3.2實驗方法………………………………………………………43 3.2.1 矽奈米粒子的製備……………………………43 3.2.2 鈷奈米粒子的製備……………………………44 3.2.3 鈷-矽複合奈米粒子的製備…………………46 3.3特性分析…………………………………………………………47 第四章 結果與討論 4.1鈷奈米粒子之製備與特性分析…………………………………49 4.1.1 以Co(NO3)2.6H2O作為前驅鹽…………… 49 4.1.2 以Co2(CO)8作為前驅鹽……………………50 4.1.3 以CoCl2‧6H2O作為前驅鹽……………………52 4.2鈷-矽複合奈米粒子之特性分析………………………………55 4.2.1 結構與組成…………………………………55 4.2.2 光學特性……………………………………61 4.2.3 磁性分析……………………………………66 第五章 結論…………………………………………………………67 參考文獻…………………………………………………………… 68

    [1] C. F. Klingshirn, Semiconductor optics, Springer, Berlin (1995).
    [2] 游志樸,半導體材料,新文京開發出版股份有限公司,臺北縣中和市 (2003)。
    [3] G. Schmid, Nanoscale Materials in Chemistry, Wiley, New York (2001).
    [4] 鄭凱安、馬仁宏、林殿琪、黃郁棻、劉瑄儀,量子點光電應用專利地圖及分析,行政院國家科學委員會技術資料中心,臺北市 (2003)。
    [5] N. M. Park, T. S. Kim and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes” Appl. Phys. Lett., 78, 2575 (2001).
    [6] I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing” Nat. Mater., 4, 435 (2005.)
    [7] X. Zhong, R. Xie, Y. Zhang, T. Basche´ and W. Knoll, “High-Quality Violet- to Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals” Chem. Mater., 17, 4038 (2005).
    [8] S. Coe, W. K. Woo, M. Bawendi and V. Bulovic´, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices” Nature, 420, 800 (2002).
    [9] M. C. Schlamp, X. Peng and A. P. Alivisatos, “Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer” J. Appl. Phys., 82, 5837 (1997).
    [10] W. G. J. H. M. van Sark, A. Meijerink, R. E. I. Schropp, J. A. M. van Roosmalen and E. H. Lysen, “Enhancing solar cell efficiency by using spectral converters” Sol. Energy Mater. Sol. Cells, 87, 395 (2005).
    [11] A. Martí, N. López, E. Antolín, E. Cánovas and A. Luque, C. R. Stanley, C. D. Farmer and P. Díaz, “Emitter degradation in quantum dot intermediate band solar cells” Appl. Phys. Lett., 90, 233510 (2007).
    [12] Z. Shen, T. Gotoh, M. Eguchi, N. Yoshida, T. Itoh and S. Nonomura, “Study of Nano-Scale Electrical Properties of Hydrogenated Microcrystalline Silicon Solar Cells by Conductive Atomic Force Microscope” Jpn. J. Appl. Phys., 46, 2858 (2007).
    [13] E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park and M. A Green, “Silicon quantum dot/crystalline silicon solar cells” Nanotechnology, 19, 245201 (2008).
    [14] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, “Semiconductor Nanocrystals as Fluorescent Biological Labels” Science, 281, 2013 (1998).
    [15] M. Han, X. Gao, J. Z. Su and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules” Nat. Biotechnol., 19, 631 (2001).
    [16] X. Gao, Y. Cui, R. M Levenson, L. W K Chung and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots” Nat. Biotechnol., 22, 969 (2004).
    [17] Z. F. Li and E. Ruckenstein, “Water-Soluble Poly(acrylic acid) Grafted Luminescent Silicon Nanoparticles and Their Use as Fluorescent Biological Staining Labels” Nano Lett., 4, 1463 (2004).
    [18] A. Uhlir, “Electronic shaping of germanium and silicon” Bell Syst. Tech. J. 35, 333 (1956).
    [19] D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions” J. Electrochem. Sot. 105, 402 (1958).
    [20] C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson and R. Greef, “Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon” J. Phys. C: Solid State Phys., 17, 6535 (1984).
    [21] S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H” Phys. Rev. B, 38, 5726 (1988).
    [22] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles” Appl. Phys. Lett. 56, 2379 (1990).
    [23] L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers” Appl. Phys. Lett., 57, 1046 (1990).
    [24] T. S. Iwayamat, M. Ohshimat, T. Niimit, S. Nakaot, K. Saitoh, T. Fujitas and N. Itoh, “Visible photoluminescence related to Si precipitates in Si+-implanted SiO2” J. Phys.: Condens. Matter, 5, L375 (1993).
    [25] 劉恩科、朱秉升、羅晉生,半導體物理學,新文京開發出版股份有限公司,臺北縣中和市 (2006)。
    [26] G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. H. Nayfeh, L. Wagner and L. Mitas, “Observation of a magic discrete family of ultrabright Si nanoparticles” Appl. Phys. Lett., 80, 841(2002).
    [27] F. Hua, M. T. Swihart and E. Ruckenstein, “Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation” Langmuir, 21, 6054 (2005).
    [28] Z. Yamani, S. Ashhab, A. Nayfeh, W. H. Thompson and M. Nayfeh, “Red to green rainbow photoluminescence from unoxidized silicon nanocrystallites” J. Appl. Phys., 83, 3929 (1998).
    [29] J. A. Carlisle, M. Dongol, I. N. Germanenko, Y. B. Pithawalla and M. S. E. Shall, “Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core” Chem. Phys. Lett., 326, 335 (2000).
    [30] J. A. Carlisle, I. N. Germanenko, Y. B. Pithawalla and M. S. E. Shall, “Morphology, photoluminescence and electronic structure in oxidized silicon nanoclusters” J. Electron Spectrosc. Relat. Phenom., 114, 229 (2001).
    [31] Z. Shen, T. Kim, U. Kortshagen, P. H. McMurry and S. A. Campbell, “Formation of highly uniform silicon nanoparticles in high density silane plasmas” J. Appl. Phys., 94, 2277 (2003).
    [32] T. U. M. S. Murthy, N. Miyamoto, M. Shimbo and J. Nishizawa, “Gas-phase nucleation during the thermal decomposition of silane in hydrogen” J. Cryst. Growth, 33, 1 (1976).
    [33] K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan and L. E. Brus, “A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction” J. Phys. Chem., 97, 1224 (1993).
    [34] S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y. H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus and P. H. Citrin, “Dimensions of luminescent oxidized and porous silicon structures” Phys. Rev. Lett., 72, 2648, (1994).
    [35] J. H. Warner, A. Hoshino, K. Yamamoto and R. D. Tilley, “Water-Soluble Photoluminescent Silicon Quantum Dots” Angew. Chem. Int. Ed., 44, 4550 (2005).
    [36] R. D. Tilley, J. H. Warner, K. Yamamoto, I. Matsui and H. Fujimori, “Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals” Chem. Commun., 14, 1833 (2005).
    [37] R. A. Bley and S. M. Kauzlarich, “A Low-Temperature Solution Phase Route for the Synthesis of Silicon Nanoclusters” J. Am. Chem. Soc., 118, 12461 (1996).
    [38] R. K. Baldwin, K. A. Pettigrew, E. Ratai, M. P. Augustine and S. M. Kauzlarich, “Solution reduction synthesis of surface stabilized silicon nanoparticles” Chem. Commun., 17, 1822 (2002).
    [39] C. S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. H. Lee and G. R. Delgado, “Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route” J. Am. Chem. Soc., 121, 5191 (1999).
    [40] Q. Liu and S. M. Kauzlarich, “A new synthetic route for the synthesis of hydrogen terminated silicon nanoparticles” Mater. Sci. Eng. B, 96, 72 (2002).
    [41] K. A. Pettigrew, Q. Liu, P. P. Power and S. M. Kauzlarich, “Solution Synthesis of Alkyl- and Alkyl-Alkoxy-Capped Silicon Nanoparticles via Oxidation of Mg2Si” Chem. Mater., 15, 4005 (2003).
    [42] J. P. Wilcoxon, G. A. Samara and P. N. Provencio, “Optical and electronic properties of Si nanoclusters synthesized in inverse micelles” Phys. Rev. B, 60, 2704 (1999).
    [43] Y. Liu, T. P. Chen, C. Y. Ng, L. Ding, S. Zhang, Y. Q. Fu and S. Fung, “Depth Profiling of Charging Effect of Si Nanocrystals Embedded in SiO2: A Study of Charge Diffusion among Si Nanocrystals” J. Phys. Chem. B, 110, 16499 (2006).
    [44] L. Ding, T. P. Chen, J. I. Wong, M. Yang, Y. Liu, C. Y. Ng, Y. C. Liu, C. H. Tung, A. D. Trigg and S. Fung, “Dielectric functions of densely stacked Si nanocrystal layer embedded in SiO2 thin films” Appl. Phys. Lett., 89, 251910 (2006).
    [45] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles” Appl. Phys. Lett., 56, 2379 (1990).
    [46] S. Dusane, T. Bhave, S. Hullavard, S. V. Bhoraskar and S. Lokhare, “Electron exo-emission study of PECVD and thermal CVD silicon rich silicon oxide” Solid State Commun., 111, 431 (1999).
    [47] Z. Yu, M. Aceves, J. Carrillo and F. Flores, “Single electron charging in Si nanocrystals embedded in silicon-rich oxide” Nanotechnology, 14, 959 (2003).
    [48] S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si-H” Phys. Rev. B, 38, 5726 (1988).
    [49] Z. H. Lu, D. J. Lockwood and J. M. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices” Nature, 378, 258 (1995).
    [50] S. Hayashi, S. Tanimoto, M. Fujii and K. Yamamoto, “Surface oxide layers of Si and Ge nanocrystals” Superlattices Microstruct., 8, 13 (1990).
    [51] X. Li, Y. He, S. S. Talukdar and M. T. Swihart, “Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum” Langmuir, 19, 8490 (2003).
    [52] X. Zhang, D. Neiner, S. Wang, A. Y. Louie and S. M. Kauzlarich, “A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability” Nanotechnology, 18, 095601 (2007).
    [53] M. L. Brongersma, A. Polman, K. S. Min and H. A. Atwater, “Depth distribution of luminescent Si nanocrystals in Si implanted SiO2 films on Si” J. Appl. Phys., 86, 759 (1999).
    [54] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma and A. Polman, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2” Appl. Phys. Lett., 69, 2033 (1996).
    [55] B. G. Fernandez, M. Lo´pez, C. Garcı´a, A. Pe´rez-Rodrı´guez, J. R. Morante, C. Bonafos, M. Carrada and A. Claverie, “Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO2” J. Appl. Phys., 91, 798 (2002).
    [56] G. G. Ross , D. Barba, C. Dahmoune, Y. Q. Wang and F. Martin, “Effect of implanted Si concentration on the Si nanocrystal size and emitted PL spectrum” Nucl. Instr. Meth in Phys. Research in Phys. Research B, 256, 211 (2007).
    [57] F. Iori1, S. Ossicini, E. Degoli, E. Luppi, R. Poli, R. Magri, G. Cantele, F. Trani and D. Ninno, “Doping in silicon nanostructures” Phys. Stat. Sol., 204, 1312 (2007).
    [58] I. Izeddin, A. S. Moskalenko, I. N. Yassievich, M. Fujii and T. Gregorkiewicz, “Nanosecond Dynamics of the Near-Infrared Photoluminescence of Er-Doped SiO2 Sensitized with Si Nanocrystals” Phys. Rev. Lett., 97, 207401 (2006).
    [59] F. Gourbilleau , R. Madelon, C. Dufour and R. Rizk, “Fabrication and optical properties of Er-doped multilayers Si-rich SiO2/SiO2: size control, optimum Er-Si coupling and interaction distance monitoring” Opt. Mater., 27, 868 (2005).
    [60] Y. Kanzawa, M. Fujii, S. Hayashi and K. Yamamoto, “Doping of B atoms into Si nanocrystals prepared by RF cosputtering” Solid State Commun., 100, 227 (1996).
    [61] M. Fujii, S. Hayashi and K. Yamamoto, “Photoluminescence from B-doped Si nanocrystals” J. Appl. Phys., 83, 7953 (1998).
    [62] X. Luo, S. B. Zhang and S. H. Wei, “Understanding Ultrahigh Doping: The Case of Boron in Silicon” Phys. Rev. Lett., 90, 026103 (2003).
    [63] M. Fujii, K. Toshikiyo, Y. Takase, Y. Yamaguchi and S. Hayashi, “Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals” J. Appl. Phys., 94, 1990 (2003).
    [64] S. Ossicinia, E. Degoli, F. Iori, E. Luppi, R. Magri, G. Cantele, F. Trani and D. Ninno, “Simultaneously B- and P-doped silicon nanoclusters: Formation energies and electronic properties” Appl. Phys. Lett., 87, 173120 (2005).
    [65] J. H. Chen, T. F. Lei, D. Landheer, X. Wu, J. Liu and T. S. Chaod, “Si Nanocrystal Memory Devices Self-Assembled by In Situ Rapid Thermal Annealing of Ultrathin a-Si on SiO2” Electrochem. Solid State Lett., 10, H302 (2007).
    [66] R. J. Walters, J. Carreras, T. Feng, L. D. Bell and H. A. Atwater, “Silicon Nanocrystal Field-Effect Light-Emitting Devices” IEEE J. Sel. Top. Quantum Electron., 12, 1647 (2006).
    [67] J. M. Shieh, Y. F. Lai, W. X. Ni, H. C. Kuo, C. Y. Fang, J. Y. Huang and Ci-Ling Pan, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer” Appl. Phys. Lett., 90, 051105 (2007).
    [68]電機工程手冊編輯委員會,機械工程手冊3-金屬材料,五南圖書出版社股份有限公司,台北市 (2002)。
    [69] O. Kitakami, H. Satao, Y. Shimada, F. Sato and M. Tanaka, “Size effect on the crystal phase of cobalt fine particles” Phys. Rev. B, 56, 13849 (1997).
    [70] T. Osaka, “Recent development of magnetic recording head core materials by plating method” Electrochem. Acta., 44, 3885 (1999).
    [71] S. A. Armyanov and G. S. Sotirova, “Electroless Co-Ni-P thin films for magnetic recording” J. Electrochem. Soc., 136, 1575 (1989).
    [72] R. C. O’Handley, Modern Magnetic Materials, John Wiley & Sons inc., New York (2000).
    [73] 吳琪淑,高效能液相層析法測定生物樣品中錳(II)、銅(II)與鈷(II),靜宜大學應用化學研究所碩士論文 (2003)。
    [74] 李宗哲,金屬複合奈米粒子於電磁波吸收之研究,國立成功大學化學工程學系博士論文 (2006)。
    [75] H. D. Jang, D. W. Hwang, D. P. Kim, H. C. Kim, B. Y. Lee and I. B. Jeong, “Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase” Mater. Res. Bull., 39, 63 (2004).
    [76] S. Kajiwara, S. Ohno, K. Honma and M. Uda, “A new crystal structure of pure cobalt formed in ultrafine particles” Phil. Mag. Lett., 55, 215 (1987).
    [77] D. L. Leslie-Pelecky, M. Bonder, T. Martin, E. M. Kirkpatrick, Y. Liu, X. Q. Zhang, S. H. Kim and R. D. Rieke, “Using High-Temperature Chenical Synthesis To Produce Metastable Nanostrured Cobalt” Chem. Mater., 10, 3732 (1998).
    [78] D. P. Dinega and M. G. Bawendi, “A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt” Angew. Chem. Int. Ed., 38, 1788 (1999).
    [79] V. F. Puntes and K. M. Krishnan, “Synthesis, Structural Order and Magnetic Behavior of Self-Assembled ε-Co Nanocrystal Arrays” IEEE Trans. Magn., 37, 2210 (2001).
    [80] V. F. Puntes, D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, “Synthesis of hcp-Co Nanodisks” J. Am. Chem. Soc., 124, 12874 (2002).
    [81] V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, “Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt” Science, 291, 2115 (2001).
    [82] A. F. Gross, M. R. Diehl, K. C. Beverly, E. K. Richman and S. H. Tolbert, “Controlling Magnetic Coupling between Cobalt Nanoparticles through Nanoscale Confinement in Hexagonal Mesoporous Silica” J. Phys. Chem. B, 107, 5475 (2003).
    [83] A. Y. Khodakov, A. G. Constant, R. Bechara and F. Villain, “Pore-Size Control of Cobalt Dispersion and Reducibility in Mesoporous Silicas” J. Phys. Chem. B, 105, 9805 (2001).
    [84] J. Osuna, D. D. Caro, C. Amiens, B. Chaudret, E. Snoeck, M. Respaud, J. M. Broto and A. Fert, “Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor” J. Phys. Chem., 100, 14571 (1996).
    [85] Charles Kittel, Introduction to Solid State Physics, Wiley, 8th edition (2007).
    [86] 張煦、李學養譯,磁性物理學,聯經出版事業公司,臺北巿 (1982)。
    [87] 莊萬發,超微粒子理論應用,復漢出版社,臺南市 (1995)。
    [88] M. A. Willard, L. K. Kurihara, E. E. Carpenter, S. Calvin and V. G. Harris, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers (2004).
    [89] B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Publishing, Massachusetts,USA (1972).
    [90] D. L. Leslie-Pelecky, “Magnetic Properties of Nanostructured Materials” Chem. Mater., 8 , 1770 (1996).
    [91] J. Zhao, C. M. Jones and D. M. Poirier, “Characterization of CoSi2 formation by x-ray photoelectron spectroscopy” J. Vac. Sci. Technol. B, 17, 2570 (1999).
    [92] I. Y. Hwang, J. H. Kim, S. K. Oh, H. J. Kang and Y. S. Lee, “Ultrathin cobalt silicide film formation on Si(100)” Surf. Interface Anal., 35, 184 (2003).

    下載圖示 校內:2009-08-12公開
    校外:2009-08-12公開
    QR CODE