簡易檢索 / 詳目顯示

研究生: 陳信志
Chen, Shin-jyh
論文名稱: 具擴張式分離管道之毛細管電泳晶片中離子遷移現象之數值研究
Numerical Study on the Ionic Migration in Capillary Zone Electrophoresis Microchip with Expansive Separation Channel
指導教授: 洪振益
Hung, Chen-i
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 毛細管電泳擴張PIC法絕對遷移率電荷密度
外文關鍵詞: capillary zone electrophoresis (CZE), expansive, particle-in-cell(PIC) method, charge density, absolute mobility
相關次數: 點閱:124下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用PIC法及Navier-Stokes方程式與絕對遷移率,數值模擬帶電溶質離子在毛細管電泳晶片內之遷移現象,並從傳統十字型微管道的毛細管電泳晶片改變為具擴張式分離管道的外形。再分別由分離端總長在L3/h=250和L3/h=1000兩個情況之下,藉由 (i)擴張段與十字交會處的距離不同 (ii)擴張段的長度不同 (iii)分離管道兩端之管徑不同 (iv)微管道內雷諾數( Reynolds number, Re )的不同,四個方向來對具有擴張式分離管道的毛細管電泳晶片內不同電性之溶質離子遷移現象進行討論。且由以上討論之參數,找出對具擴張式分離管道外形之帶電離子遷移現象較為顯著的影響,並觀察其分離檢測過程時之電荷密度。
    由結果顯示,在擴張段與十字交會處的距離不同時,對帶電離子在毛細管電泳微管道內之遷移現象會有較為顯著的影響。故再針對其分離檢測過程作電荷密度之分析。可發現在L3/h=1000時,帶正電離子之電荷密度較高,且其負離子之分離檢測效果也比在L3/h=250時好。並可知帶正負電溶質離子會隨著分離時間的增加而分離的愈明顯。

    This study employed the particle-in-cell (PIC) method, Navier-Stokes equation, and absolute mobility to simulate charged solute ionic migration in capillary zone electrophoresis (CZE) chip, especially in an expansive separation-channel CZE system. Under the condition of L3/h=250 and L3/h=1000, the present study describes the migration of differently charged solute ions in an expansive separation-channel CZE system in terms of (i) different distance between expansion section and intersection, (ii) different length of expansion section, (iii) different width of both-end of separation channel, and (iv) different Reynolds number (Re) in microchannel. Furthermore, based on the four parameters above-mentioned, this study is to find out the significant effect on the migration of charged ions in an expansive separation-channel CZE system, and to observe the charge density in the detection process.
    The results reveal that when the distance of expansion section and intersection differs, the expansive channel shows a significant effect on the migration of charged ions in CZE system. Besides, according to the analysis of charge density in the separation detect process, it shows that the charge density of positive ions is higher, and the detection effect of negative ions are better when L3/h=1000. Furthermore, the positive and negative charged ions are separation apparent that when separation detect time increase.

    摘要..........................................................................................................I Abstract....................................................................................................II 誌謝........................................................................................................III 目錄........................................................................................................IV 圖目錄...................................................................................................VII 符號說明..............................................................................................XIII 第一章、 緒論..........................................................................................1 1-1研究背景.............................................................................................1 1-2研究動機與目的.................................................................................3 1-3文獻回顧.............................................................................................5 1-4本文架構.............................................................................................8 第二章、 理論分析..................................................................................10 2-1基本假設.............................................................................................10 2-2統御方程式.........................................................................................10 2-3無因次分析.........................................................................................13 2-4邊界條件.............................................................................................15 2-5電雙層理論.........................................................................................16 2-6解電雙層內部分布之Poisson-Boltzmann方程式...............................18 2-7電泳遷移率.........................................................................................21 2-8電滲流理論.........................................................................................23 2-9離子遷移率.........................................................................................26 2-10粒子式模擬法(Particle-in-cell method).............................................28 第三章、 數值方法..................................................................................31 3-1 序論....................................................................................................31 3-2 數值流程…........................................................................................31 3-2-1 將帶電溶質離子之電荷分佈至鄰近格點上並計算其電荷 密度...........................................................................................................32 3-2-2 解外加電場之電位勢分布….......................................................33 3-2-3 解電雙層分布之Poisson方程式...................................................34 3-2-4 解電滲流流場之Navier-Stokes方程式.........................................36 3-2-5 計算帶電溶質離子移動之新位置...............................................41 第四章、 結果與討論..............................................................................44 4-1毛細管電泳晶片之幾何外形.............................................................44 4-2物理性質.............................................................................................45 4-3電場及電滲流流場分布.....................................................................46 4-4管道內帶電離子之遷移現象.............................................................47 4-5分離管道內之電荷密度.....................................................................51 第五章、 結論與未來展望......................................................................53 5-1 結論....................................................................................................53 5-2 未來展望............................................................................................55 參考文獻...................................................................................................56 附錄A........................................................................................................101 自述...........................................................................................................104

    [1] Manz, A., Graber, N. and Widmer, H. M., “Miniaturized total chemical analysis systems: A novel concept for chemical sensing”, Sensors and Actuators B, Vol.1, pp.244-248, 1990.
    [2] Paegel, B. M., Hutt, L. D., Simpson, P. C. and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels”, Analytical Chemistry, Vol.72, No.14, pp.3030-3037, 2000.
    [3] Griffiths, S. K. and Nilson, R. H., “Low-Dispersion Turns and Junctions for Microchannel Systems”, Analytical Chemistry, Vol.73, pp.272-278, 2001.
    [4] Molho, J. I., Herr, A. E., Mosier, B. P., Santiago, J. G. and Kenny, T. W., “Optimization of Turn Geometries for Microchip Electrophoresis”, Analytical Chemistry, Vol.73, No.6, pp.1350-1360, 2001.
    [5] Tasi, C. H., Hung, M. F., Chang, C. L., Chen, L. W. and Fu, L. M., “Optimal configuration of capillary electrophoresis microchip with expansion chamber in separation channel”, Journal of Chromatography A, Vol.1121, pp.120-128, 2006.
    [6] Gravesen, P., Branebjerg, J. and Jensen, O. S., “Microfluidics-a review”, Journal of Micromechanics and Microengineering, Vol.3, No.4, pp.168-182, 1993.
    [7] Mala, G. M., Li, D., Werner, C., Jacobasch, H. J. and Ning, Y. B., “Flow Characteristics of Water Through a Microchannel between Two Parallel Plates with Electrokinetic Effects”, The International Journal of Heat and Fluid Flow, Vol.18, No.5, pp.489-496, 1997.

    [8] Yang, C. and Li, D., “Electrokinetic Effects on Pressure-Driven Liquid
    Flows in Rectangular Microchannels”, Journal of Colloid and Interface Science, Vol.194, No.1, pp.95-107, 1997.
    [9] Helmholtz, H. V., “Studien über elektrische Grenzschichten”, Wiedemann´s Annual Physical Chemistry, Vol.7, pp.337-382, 1879.
    [10] Kohlrausch, F., “Ueber Concentrations-Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen”, Annual Review of Physical Chemistry, Vol.62, pp.209-239, 1897.
    [11] Tiselius, A., “The moving boundary method of studying the electrophoresis of Proteins”, Nova Acta Regia Societatis Scientiarum Upsaliensis Series IV, Vol.7, No.4, 1937.
    [12] Hjerten, S., “Free Zone Electrophoresis”, Chromatography Reviews, Vol.9, pp.122-219, 1967.
    [13] Mikkers, F. E. P., Everaerts, F. M. and Verheggen, Th. P. E. M., “High-performance zone electrophoresis”, Journal of Chromatography, Vol.169, pp.11-20, 1979.
    [14] Jorgenson, J. W. and Lukacs, K. D., “Zone Electrophoreisis in Open-Tubular Glass Capillaries”, Analytical Chemistry, Vol.53, pp.1298-1302, 1981.
    [15] Hjerten, S., Liao, J. L. and Yao, K., “Theoretical and experimental study of high-performance electrophoretic mobilization of isoelectrically focused protein zones”, Journal of Chromatography, Vol.387, pp.127-138, 1987.
    [16] Tsuda, T., “Electrochromatography using high applied voltage”, Analytical Chemistry, Vol.59, No.3, pp.521-523, 1987.
    [17] Rose, D. J. and Jorgenson, J. W., “Characterization and Automation of Sample Introduction Methods for Capillary Zone Electrophoresis”, Analytical Chemistry, Vol.60, No.7, pp.642-648, 1988.
    [18] Harrison, D. J., Manz, A., Fan, Z. and Ludi, H., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip”, Analytical Chemistry, Vol.64, No.17, pp.1926-1932, 1992.
    [19] Seiler, K., Harrison, D. J. and Manz, A., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantization, Separation Efficiency”, Analytical Chemistry, Vol.65, pp.1481-1488, 1993.
    [20] Harrison, D. J., Glavina, P. G. and Manz, A., “Towards miniaturized electrophoresis and chemical analysis system on silicon: an alternative to chemical sensor”, Sensors and Actuators B, Vol.10, pp.107-116, 1993.
    [21] Fan, Z. H. and Harrison, D. J., “Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections”, Analytical Chemistry, Vol.66, No.1, pp.177-184, 1994.
    [22] Seiler, K., Fan, Z. H., Fluri, K. and Harrison, D. J., “Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip”, Analytical Chemistry, Vol.66, pp.3485-3491, 1994.
    [23] Effenhauser, C. S., Paulus, A., Manz, A. and Widmer, H. M., “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device”, Analytical Chemistry, Vol.66, No.18, pp.2949-2953, 1994.
    [24] Burggraf, N., Manz, A., Verpoorte, E., Effenhauser, C. S. and , H. M., de Rooij, N. F., “A novel approach to ion separations in solution: Synehronized cyclic. capillary electrophoresis (SCCE)”, Sensors and Actuators. B, Vol.20, No.2/3, pp.103-110, 1994.
    [25] Jacobson, S. C., Koutny, L. B., Hergenroder, R., Moore, A. W. and Ramsey, J. M., “Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor”, Analytical Chemistry, Vol.66, No.20, pp.3472-3476, 1994.
    [26] Culbertson, C. T. and Jorgenson, J. W., “Flow Counterbalanced Capillary Electrophoresis”, Analytical Chemistry, Vol.66, No.7, pp.955-962, 1994.
    [27] Rawool, A. S., Mitra S. K., “Numerical simulation of electroosmotic effect in serpentine channels”, Microfluidics and Nanofluidics, Vol.2, pp.261-269, 2006.
    [28] Rice, C. I. and Whitehead, R., “Electrokinetic flow in a narrow capillary”, The Journal of Physical Chemistry, Vol.69, No.11, pp.4017-4024, 1965.
    [29] Andreev, V. P. and Lisin, E. E., “On the mathematical model of capillary electrophoresis”, Chromatographia, Vol.37, No.3/4, pp.202-210, 1993.
    [30] Patankar, N. A. and Hu, H. H., “Numerical Simulation of Electroosmotic Flow”, Analytical Chemistry, Vol.70, No.9, pp.1870-1881, 1998.
    [31] Yang, C., Li, D. and Masliyah, J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects”, International Journal of Heat and Mass Transfer, Vol.41, No.24, pp.4229-4249, 1998.
    [32] Hu, L., Harrison, J. D. and Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis”, Journal of Colloid and Interface Science, Vol.215, No.2, pp.300-312, 1999.
    [33] Dutta, P. and Beskok, A., “Analytical Solution of Combined Electroosmotic /Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects”, Analytical Chemistry, Vol.73, No.9, pp.1979-1986, 2001.
    [34] Ren, L. and Li, D., “Electroosmotic Flow in Heterogeneous Microchannels”, Journal of Colloid and Interface Science, Vol.243, No.1, pp.255-261, 2001.
    [35] Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1986.
    [36] Hunter, R. J., Zeta potential in Colloid Science: Principles and Applications, Academic Press, New York, 1981.
    [37] Chee, G. L., Wan, T. S. M., “Reproducible and high-speed separation of basic drugs by capillary zone electrophoresis”, Journal of Chromatography, Vol.612, No.1, pp.172-177, 1993.
    [38] Attard, P., Antelmi, D. and Larson, I., “Comparison of the Zeta Potential with the Diffuse Layer Potential from Charge Titration”, Langmuir, Vol.16, No.4, pp.1542-1552, 2000.
    [39] Burgreen, D. and Nakache, F. R., “Electrokinetic Flow in Ultrafine Capillary Slits”, The Journal of Physical Chemistry, Vol.68, No.5, pp.1084-1091, 1964.
    [40] Muzikar, J., Van De Goor, T., GaŠ, B. and Kenndler, E., “Electrophoretic mobilities of large organic ions in nonaqueous solvents: Determination by capillary electrophoresis in propylene carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, acetonitrile and methanol”, Electrophoresis , Vol.23, No.3, pp.375-382, 2002.
    [41] Birdsall, C. K., “Particls-in-cell Charged-Particle Simulations, Plus Monte-Crlo-Collisions with Neutral Atoms”, IEEE Transactions on Plasma Science, Vol.19, No.2, pp.65-85, 1991.
    [42] Hockney, R. W. and Eastwood, J. W., Computer Simulation Using Particles, Institute of Physics Publishing Ltd., 1988.
    [43] Dawson, J. M., “Particle Simulation of Plasma”, Reviews of Modern Physics, Vol.55, No.2, pp.403-447, 1983.
    [44] Birdsall, C. K. and Langdon, A. B., Plasma Physics via Computer Simulation, McGraw-Hill, New York, pp.20-22, 1985.
    [45] Thomas, J. W., Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag, New York, 1995.
    [46] Saville, D. A., “Electrokinetic Effects with Small Particles”, Annual Review of Fluid Mechanics, Vol.9, pp.321-337, 1977.
    [47] Arulanandam, S. and Li, D., “Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping”, Colloids and Surfaces A:
    Physicochemical and Engineering Aspects, Vol.161, No.1, pp.89-102, 2000.
    [48] Hsu, M. Y. and Hung, C. I., “Simulation of Charge Ion Migration in Capillary Zone Electrophoresis System Using Particle in Cell Method”, Japanese Journal of Applied Physics, Vol.46, No.6A, 2007.

    下載圖示 校內:2010-07-10公開
    校外:2013-07-10公開
    QR CODE