簡易檢索 / 詳目顯示

研究生: 蔡博仰
Tsai, Bo-Yang
論文名稱: 探討台灣地區人類與豬隻的困難梭狀桿菌之特性
Characterization of Clostridium difficile from human and swine in Taiwan
指導教授: 蔡佩珍
Tsai, Pei-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 91
中文關鍵詞: 困難梭狀桿菌多重聚合酶鏈鎖反應高毒力基因型核醣型078家族潛在人畜共通
外文關鍵詞: Clostridium difficile, multiplex-PCR, hypertoxigenic, RT078-family, potential zoonosis
相關次數: 點閱:104下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在歐美地區困難梭狀桿菌被認為是目前造成院內感染性腹瀉的主要致病菌。然而,台灣對於困難梭狀桿菌的流行病學調查是缺乏的。為了瞭解困難梭狀桿菌在台灣的分佈與基因型多樣性,我們收集了從2011年到2012年兩年來自台南醫院的251個不重複的臨床病人分離菌株。針對臨床菌株的毒素基因分型,我建立一個快速篩檢的多重聚合酶鏈鎖反應,同時搭配一個針對tcdA基因3端截斷突變的聚合酶鏈鎖反應來偵測許多困難梭狀桿菌毒力相關的基因,包含毒素A(tcdA)、毒素B(tcdB)、二元毒素CDT(cdtA and cdtB)以及毒素負調控子TcdC(tcdC)的截斷突變。分型結果顯示臨床檢體有45.8%(115/251)同時帶有tcdA 與 tcdB 基因(A+B+),而32.7%(54/251)的臨床菌株是不具有毒性基因存在(A-B-)。值得我們注意的是這些臨床菌株中有21.5%(54/251)的菌株只具有tcdB基因(A-B+)。然而,在A+B+基因型的菌株中只有十八株菌株(7.2%)是二元毒素基因cdtA與cdtB陽性並同時帶有毒素負調控基因tcdC截斷突變,包含 22%的18個鹼基缺失與78%的39個鹼基缺失。進一步,這十八株高毒力基因型的菌株(A+B+CDT+)利用聚合酶鏈鎖反應進行核醣型分型(Ribotying)。菌株核醣型的鑑定主要是透過英國的困難梭狀桿菌核醣型網絡中心(CDRN)協助,結果顯示在本研究中並沒有核醣型027的存在,其中高毒力基因型的菌株中佔大多數的核醣型屬於核醣型078家族(77.8%, 14/18),包含了核醣型078(5.5%)、核醣型127(33.3%)、核醣型126(22.2%)以及一個具有RT078 marker的未知核醣型(16.7%)。對應臨床資料顯示這十八株高毒力菌株中有七株(38.9%)造成病人產生典型腹瀉症狀,其中核醣型078家族佔了五株。值得注意的是一名被核醣型126菌株感染的病人甚至發展成偽膜性結腸炎。此外,細胞毒性實驗的結果顯示核醣型078家族與其他核醣型的菌株比較下具有較高的細胞毒性。過去的研究曾指出核醣型078家族普遍存在於全世界的動物,特別是豬隻。因此,我分析從2011年八月到2015年三月收集來自台灣十六個不同豬場的134個檢體。結果顯示在豬隻身上有85.1%(114/134)的陽性分離率而且所有的分離菌株也都屬於核醣型078-家族,包含核醣型078(32.5%)、核醣型126(28.9%)、 核醣型127(37.7%)以及一個未知的核醣型(0.9%)。其中豬隻分離的三個核醣型078與病人分離的核醣型078菌株具有相同的重複序列分型圖譜(Rep-PCR)與相同的tcdB基因次分型,這表示人與豬之間的核醣型078菌株在親緣關係上相近,具有潛在人畜共通的特性。同時我也發現核醣型078和126在血盤培養上都展現獨特的菌株型態,同時在液體培養中也表現特殊的高聚集性(aggregation),但是這些特性卻與菌株生長快速及生物膜的形成無關。總結,所有的實驗結果都指出台灣地區所存在的核醣型078家族菌株是需要持續監控與調查,以防未來菌株有擴散與群突發的風險。

    Clostridium difficile is the major cause of nosocomial diarrhea. Epidemiological study on C. difficile in Taiwan is limited. A total of 251 C. difficile isolates from patients were collected between January 2011 and December 2012 in southern Taiwan. I analyzed the distribution of toxin A (tcdA), toxin B (tcdB), and binary toxin genes (both cdtA and cdtB) and tcdC truncated mutations in all isolates by a newly established multiplex-PCR with additional truncated-tcdA PCR screening. A total of 45.8% (115/251) isolates harbored tcdA and tcdB (A+B+), and 32.7% (54/251) isolates did not have tcdA and tcdB (A-B-). Notably, 21.5% (54/251) of isolates were tcdA-nagative and tcdB-positive (A-B+). Among these A+B+ strains, eighteen isolates (7.2%) were also positive for cdtA/B, which carry a tcdC gene deletion, including an 18-bp (22%) or 39-bp deletion (78%). These eighteen hypertoxigenic (A+B+CDT+) strains were further typed by PCR-ribotyping. There was no ribotype 027 in this study and the predominant PCR-ribotypes were defined as RT078-family (77.8%, 14/18) including RT078 (5.5%), RT127 (33.3%), RT126 (22.2%) and unknown RT-type (16.7%) with a RT078 marker, which were confirmed by the C. difficile Ribotyping Network (CDRN) in England. Retrospective review of clinical data demonstrated 7 hypertoxigenic strains caused C. difficile associated diarrhea (CDAD) in patients and 5 of 7 belonged to RT078-family. Notably, one patient infected by RT126 even developed the severe pseudomembranous colitis (PMC). In addition, RT078-family is more cytotoxic than other ribotypes. Previous studies demonstrated that C. difficile RT078-family is predominant in animals worldwide, particularly in swine. Therefore, I surveyed C. difficile strains isolated from swine in sixteen farms during August 2011 and March 2015 in Taiwan. I found the positive culture rate is 85.1% (114/134) and all strains from swine belonged to RT078-family, including RT078 (32.5%), RT126 (28.9%), RT127 (37.7%) and one unknown-RT (0.9%) with RT078 marker. Among RT078 isolates, I found three swine isolates might that be identical to the strains isolated from patient by Rep-PCR and tcdB sequencing, suggesting these is potential zoonosis between human and swine in Taiwan. Meanwhile, we observed that RT078 and RT126 strains presented distinctive colony morphology on agar plate and aggregation phenotype in broth culture, which were not associated with rapid growth or biofilm formation. In conclusion, these results highlighted that toxigenic RT078 family strains in Taiwan is predominant and more attention should be given in order to minimize risk of further spreading.

    中文摘要 I ABSTRACT II 致謝 III TABLE OF CONTENTS IV TABLE INDEX VII FIGURE INDEX VIII ABBREVIATION IX CHAPTER 1 INTRODUCTION 1 1.1 General introduction of Clostridium difficile infection 1 1.2 The virulence factors of C. difficile infection 2 1.3 Clinical diagnosis and therapy for C. difficile infection 5 1.4 Molecular typing for C. difficile 6 1.5 The changing epidemiology of CDI worldwide 8 1.6 Ribotype 078-family strains 9 1.7 The epidemiology of C. difficile in East Asia 10 1.8 The rationale of this study 12 CHAPTER 2 MATERIALS AND METHODS 13 2.1 Bacteria strains 13 2.1.1 Collection of clinical C. difficile isolates 13 2.1.2 Reference strains of C. difficile 13 2.1.3 Reference strains of Clostridium spp. 14 2.2 Bacterial culture and genomic DNA preparation 14 2.3 Molecular typing for C. difficile 14 2.3.1 Establishment of multiplex-PCR supplemented with truncated-tcdA screening for rapid diagnosis of C. difficile genotype 15 2.3.2 Screening for strains with truncated tcdA 15 2.3.3 Gene Sequencing 16 2.3.4 Analysis of the truncation and mutation of tcdC 16 2.4 PCR ribotyping 16 2.4.1 Sample preparation and capillary gel electrophoresis for ribotyping 16 2.4.2 Phylogenetic cluster analysis for banding pattern of RTs 17 2.4.3 Identification of RTs 17 2.5 Antimicrobial susceptibility test 18 2.5.1 gyr gene sequencing and blast analysis 18 2.5.2 E-test for minimum inhibitory concentration (MIC) 18 2.6 Cell cytotoxic assay 19 2.6.1 Cell line 19 2.6.2 Sample preparation and cell cytotoxicity assay 19 2.7 Subtyping for C. difficile isolates 20 2.7.1 Repetitive Sequence-Based PCR (Rep-PCR) 21 2.7.2 Sequencing of tcdB and phylogenetic analysis 21 2.8 Bacterial characterization 22 2.8.1 Morphology of colonies on agar plate 22 2.8.2 Assessment of aggregation and quantitative measurement 22 2.8.3 Growth measurement 22 2.9 Biofilm analysis 23 2.10 Statistical analysis 23 CHAPTER 3 RESULTS 25 3.1 Establishment of a new multiplex-PCR for clinical rapid diagnosis 25 3.2 Distribution of C. difficile toxin genotype in southern Taiwan 25 3.3 Distribution of ribotypes in these hypertoxigenic strains 26 3.4 RT078-family strains have a high drug susceptibility and drug resistance gene gyrA mutation rate in these hypertoxigenic strains 26 3.5 RT078-family strains, particularly RT126 is linked to severe symptom and predominant in northern and southern Taiwan for a long time 27 3.6 RT078-family is more cytotoxic to HT-29 cell line than other ribotypes, including the epidemic RT027 strain 28 3.7 RT078-family is the predominant ribotype in swine isolates in Taiwan 28 3.8 RT078 strain has a zoonotic potential 29 3.9 RT078 and RT126, two members of RT078-family, presented the distinctive phenotypes in colony morphology and cell aggregation 30 3.10 The RT078- and RT126- distinctive phenotypes are not associated with the growth rate and the formation of biofilm 30 CHAPTER 4 DISCUSSION 32 REFERENCE 38 APPENDIX 73

    1. Bartlett, J.G., Clostridium difficile infection: pathophysiology and diagnosis. Semin Gastrointest Dis, 1997. 8(1): p. 12-21.
    2. Rupnik, M., M.H. Wilcox, and D.N. Gerding, Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol, 2009. 7(7): p. 526-36.
    3. Owens, R.C., Jr., et al., Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis, 2008. 46 Suppl 1: p. S19-31.
    4. Bien, J., V. Palagani, and P. Bozko, The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therap Adv Gastroenterol, 2013. 6(1): p. 53-68.
    5. Kim, J., et al., Epidemiological features of Clostridium difficile-associated disease among inpatients at children's hospitals in the United States, 2001-2006. Pediatrics, 2008. 122(6): p. 1266-70.
    6. Rouphael, N.G., et al., Clostridium difficile-associated diarrhea: an emerging threat to pregnant women. Am J Obstet Gynecol, 2008. 198(6): p. 635 e1-6.
    7. Fawley, W.N., et al., Efficacy of hospital cleaning agents and germicides against epidemic Clostridium difficile strains. Infect Control Hosp Epidemiol, 2007. 28(8): p. 920-5.
    8. Rupnik, M., Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect, 2007. 13(5): p. 457-9.
    9. Hurley, B.W. and C.C. Nguyen, The spectrum of pseudomembranous enterocolitis and antibiotic-associated diarrhea. Arch Intern Med, 2002. 162(19): p. 2177-84.
    10. Voth, D.E. and J.D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev, 2005. 18(2): p. 247-63.
    11. Jank, T. and K. Aktories, Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol, 2008. 16(5): p. 222-9.
    12. Papatheodorou, P., et al., Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS One, 2010. 5(5): p. e10673.
    13. Na, X., et al., gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A. Infect Immun, 2008. 76(7): p. 2862-71.
    14. Just, I. and R. Gerhard, Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol, 2004. 152: p. 23-47.
    15. Thelestam, M. and E. Chaves-Olarte, Cytotoxic effects of the Clostridium difficile toxins. Curr Top Microbiol Immunol, 2000. 250: p. 85-96.
    16. Jank, T., T. Giesemann, and K. Aktories, Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology, 2007. 17(4): p. 15R-22R.
    17. Heap, J.T., et al., The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods, 2007. 70(3): p. 452-64.
    18. Lyras, D., et al., Toxin B is essential for virulence of Clostridium difficile. Nature, 2009. 458(7242): p. 1176-9.
    19. Riegler, M., et al., Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J Clin Invest, 1995. 95(5): p. 2004-11.
    20. Matamouros, S., P. England, and B. Dupuy, Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol, 2007. 64(5): p. 1274-88.
    21. Tan, K.S., B.Y. Wee, and K.P. Song, Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile. J Med Microbiol, 2001. 50(7): p. 613-9.
    22. Mani, N. and B. Dupuy, Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A, 2001. 98(10): p. 5844-9.
    23. Rupnik, M., Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev, 2008. 32(3): p. 541-55.
    24. Hundsberger, T., et al., Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem, 1997. 244(3): p. 735-42.
    25. Freeman, J., et al., Comparison of the efficacy of ramoplanin and vancomycin in both in vitro and in vivo models of clindamycin-induced Clostridium difficile infection. J Antimicrob Chemother, 2005. 56(4): p. 717-25.
    26. Saxton, K., et al., Effects of exposure of Clostridium difficile PCR ribotypes 027 and 001 to fluoroquinolones in a human gut model. Antimicrob Agents Chemother, 2009. 53(2): p. 412-20.
    27. Dineen, S.S., et al., Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol, 2007. 66(1): p. 206-19.
    28. McKee, R.W., et al., The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol, 2013. 195(22): p. 5174-85.
    29. Darkoh, C., et al., Toxin synthesis by Clostridium difficile is regulated through quorum signaling. MBio, 2015. 6(2): p. e02569.
    30. Aubry, A., et al., Modulation of toxin production by the flagellar regulon in Clostridium difficile. Infect Immun, 2012. 80(10): p. 3521-32.
    31. Gerding, D.N., et al., Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes, 2014. 5(1): p. 15-27.
    32. Schwan, C., et al., Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog, 2009. 5(10): p. e1000626.
    33. Schwan, C., et al., Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A, 2014. 111(6): p. 2313-8.
    34. Persson, S., M. Torpdahl, and K.E. Olsen, New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect, 2008. 14(11): p. 1057-64.
    35. Ausiello, C.M., et al., Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect, 2006. 8(11): p. 2640-6.
    36. Pechine, S., C. Janoir, and A. Collignon, Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J Clin Microbiol, 2005. 43(10): p. 5018-25.
    37. Wright, A., et al., Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics, 2005. 5(9): p. 2443-52.
    38. Drudy, D., et al., Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol, 2004. 41(3): p. 237-42.
    39. Calabi, E. and N. Fairweather, Patterns of sequence conservation in the S-Layer proteins and related sequences in Clostridium difficile. J Bacteriol, 2002. 184(14): p. 3886-97.
    40. Merrigan, M.M., et al., Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One, 2013. 8(11): p. e78404.
    41. Crobach, M.J., et al., European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect, 2009. 15(12): p. 1053-66.
    42. Planche, T.D., et al., Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C. difficile infection. Lancet Infect Dis, 2013. 13(11): p. 936-45.
    43. Burnham, C.A. and K.C. Carroll, Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev, 2013. 26(3): p. 604-30.
    44. Lo Vecchio, A. and G.M. Zacur, Clostridium difficile infection: an update on epidemiology, risk factors, and therapeutic options. Curr Opin Gastroenterol, 2012. 28(1): p. 1-9.
    45. Al-Nassir, W.N., et al., Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob Agents Chemother, 2008. 52(7): p. 2403-6.
    46. Cornely, O.A., et al., Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis, 2012. 55 Suppl 2: p. S154-61.
    47. Chahine, E.B., A.J. Sucher, and K. Mantei, Fidaxomicin: a novel macrolide antibiotic for Clostridium difficile infection. Consult Pharm, 2014. 29(9): p. 614-24.
    48. Brown, W.R., Fecal microbiota transplantation in treating Clostridium difficile infection. J Dig Dis, 2014. 15(8): p. 405-8.
    49. Bidet, P., et al., Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett, 1999. 175(2): p. 261-6.
    50. Fawley, W.N., et al., Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotyping protocol for Clostridium difficile. PLoS One, 2015. 10(2): p. e0118150.
    51. Janezic, S. and M. Rupnik, Molecular typing methods for Clostridium difficile: pulsed-field gel electrophoresis and PCR ribotyping. Methods Mol Biol, 2010. 646: p. 55-65.
    52. Lemee, L., et al., Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile. Microbiology, 2005. 151(Pt 10): p. 3171-80.
    53. Elliott, B., et al., New types of toxin A-negative, toxin B-positive strains among clinical isolates of Clostridium difficile in Australia. J Med Microbiol, 2011. 60(Pt 8): p. 1108-11.
    54. Pepin, J., et al., Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ, 2004. 171(5): p. 466-72.
    55. McDonald, L.C., et al., An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med, 2005. 353(23): p. 2433-41.
    56. Loo, V.G., et al., A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med, 2005. 353(23): p. 2442-9.
    57. Drudy, D., et al., gyrA mutations in fluoroquinolone-resistant Clostridium difficile PCR-027. Emerg Infect Dis, 2007. 13(3): p. 504-5.
    58. Merrigan, M., et al., Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol, 2010. 192(19): p. 4904-11.
    59. Curry, S.R., et al., tcdC genotypes associated with severe TcdC truncation in an epidemic clone and other strains of Clostridium difficile. J Clin Microbiol, 2007. 45(1): p. 215-21.
    60. Warny, M., et al., Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet, 2005. 366(9491): p. 1079-84.
    61. Freeman, J., et al., The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev, 2010. 23(3): p. 529-49.
    62. Goorhuis, A., et al., Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol, 2008. 46(3): p. 1157; author reply 1158.
    63. Schneeberg, A., et al., Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol, 2013. 51(11): p. 3796-803.
    64. Debast, S.B., et al., Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol, 2009. 11(2): p. 505-11.
    65. Arvand, M., et al., Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany. Euro Surveill, 2009. 14(45).
    66. al Saif, N. and J.S. Brazier, The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol, 1996. 45(2): p. 133-7.
    67. Rodriguez-Palacios, A., et al., Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis, 2007. 13(3): p. 485-7.
    68. Songer, J.G., et al., Clostridium difficile in retail meat products, USA, 2007. Emerg Infect Dis, 2009. 15(5): p. 819-21.
    69. Jhung, M.A., et al., Toxinotype V Clostridium difficile in humans and food animals. Emerg Infect Dis, 2008. 14(7): p. 1039-45.
    70. Rupnik, M., et al., Clostridium difficile toxinotype V, ribotype 078, in animals and humans. J Clin Microbiol, 2008. 46(6): p. 2146.
    71. Kuijper, E.J., et al., Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect, 2006. 12 Suppl 6: p. 2-18.
    72. Stabler, R.A., et al., Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS One, 2012. 7(3): p. e31559.
    73. Walker, A.S., et al., Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. Clin Infect Dis, 2013. 56(11): p. 1589-600.
    74. He, M., et al., Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A, 2010. 107(16): p. 7527-32.
    75. Elliott, B., et al., The complexity and diversity of the Pathogenicity Locus in Clostridium difficile clade 5. Genome Biol Evol, 2014. 6(12): p. 3159-70.
    76. Knetsch, C.W., et al., Genetic markers for Clostridium difficile lineages linked to hypervirulence. Microbiology, 2011. 157(Pt 11): p. 3113-23.
    77. Knight, D.R., et al., Diversity and Evolution in the Genome of Clostridium difficile. Clin Microbiol Rev, 2015. 28(3): p. 721-741.
    78. Knight, D.R., et al., Cross-sectional study reveals high prevalence of Clostridium difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol, 2013. 79(8): p. 2630-5.
    79. Knight, D.R., M.M. Squire, and T.V. Riley, Laboratory detection of Clostridium difficile in piglets in Australia. J Clin Microbiol, 2014. 52(11): p. 3856-62.
    80. Troiano, T., et al., Toxigenic Clostridium difficile PCR ribotypes in edible marine bivalve molluscs in Italy. Int J Food Microbiol, 2015. 208: p. 30-4.
    81. Hensgens, M.P., et al., Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect, 2012. 18(7): p. 635-45.
    82. Romano, V., et al., Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in southern Switzerland. Appl Environ Microbiol, 2012. 78(18): p. 6643-6.
    83. Rodriguez-Palacios, A., et al., Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev, 2013. 14(1): p. 11-29.
    84. Collins, D.A., P.M. Hawkey, and T.V. Riley, Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control, 2013. 2(1): p. 21.
    85. Wang, P., et al., Identification of Clostridium difficile ribotype 027 for the first time in Mainland China. Infect Control Hosp Epidemiol, 2014. 35(1): p. 95-8.
    86. Sawabe, E., et al., Molecular analysis of Clostridium difficile at a university teaching hospital in Japan: a shift in the predominant type over a five-year period. Eur J Clin Microbiol Infect Dis, 2007. 26(10): p. 695-703.
    87. Kim, J., et al., Epidemiology of Clostridium difficile infections in a tertiary-care hospital in Korea. Clin Microbiol Infect, 2013. 19(6): p. 521-7.
    88. Dingle, K.E., et al., Clinical Clostridium difficile: clonality and pathogenicity locus diversity. PLoS One, 2011. 6(5): p. e19993.
    89. Rupnik, M., et al., New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. J Clin Microbiol, 2003. 41(3): p. 1118-25.
    90. Kato, H., T. Yokoyama, and Y. Arakawa, Typing by sequencing the slpA gene of Clostridium difficile strains causing multiple outbreaks in Japan. J Med Microbiol, 2005. 54(Pt 2): p. 167-71.
    91. Chia, J.H., et al., Molecular epidemiology of Clostridium difficile at a medical center in Taiwan: persistence of genetically clustering of A(-)B(+) isolates and increase of A(+)B(+) isolates. PLoS One, 2013. 8(10): p. e75471.
    92. Lin, Y.C., et al., Antimicrobial susceptibilities and molecular epidemiology of clinical isolates of Clostridium difficile in taiwan. Antimicrob Agents Chemother, 2011. 55(4): p. 1701-5.
    93. Hung, Y.P., et al., The first case of severe Clostridium difficile ribotype 027 infection in Taiwan. J Infect, 2015. 70(1): p. 98-101.
    94. Persson, S., J.N. Jensen, and K.E. Olsen, Multiplex PCR method for detection of Clostridium difficile tcdA, tcdB, cdtA, and cdtB and internal in-frame deletion of tcdC. J Clin Microbiol, 2011. 49(12): p. 4299-300.
    95. Dhalluin, A., et al., Genotypic differentiation of twelve Clostridium species by polymorphism analysis of the triosephosphate isomerase (tpi) gene. Syst Appl Microbiol, 2003. 26(1): p. 90-6.
    96. Kilic, A., et al., Multiplex Real-Time PCR Method for Simultaneous Identification and Toxigenic Type Characterization of Clostridium difficile From Stool Samples. Ann Lab Med, 2015. 35(3): p. 306-13.
    97. Spigaglia, P., et al., Detection of gyrA and gyrB mutations in Clostridium difficile isolates by real-time PCR. Mol Cell Probes, 2010. 24(2): p. 61-7.
    98. Northey, G., et al., Subtyping of Clostridium difficile PCR ribotype 001 by REP-PCR and PFGE. J Med Microbiol, 2005. 54(Pt 6): p. 543-7.
    99. Du, P., et al., Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol, 2014. 52(9): p. 3264-70.
    100. Bordeleau, E., et al., Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol, 2015. 197(5): p. 819-32.
    101. Dawson, L.F., et al., Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PLoS One, 2012. 7(12): p. e50527.
    102. Hung, Y.P., et al., Clostridium difficile ribotype 126 in southern Taiwan: a cluster of three symptomatic cases. Anaerobe, 2014. 30: p. 188-92.
    103. Goorhuis, A., et al., Type-specific risk factors and outcome in an outbreak with 2 different Clostridium difficile types simultaneously in 1 hospital. Clin Infect Dis, 2011. 53(9): p. 860-9.
    104. Valiente, E., et al., Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol, 2012. 61(Pt 1): p. 49-56.
    105. Liao, T.L., et al., Clostridium difficile PCR ribotype 027 appears in Taiwan. Jpn J Infect Dis, 2014.
    106. Lai, M.J., et al., The first Clostridium difficile ribotype 027 strain isolated in Taiwan. J Formos Med Assoc, 2015.
    107. Jamal, W., et al., Analysis of prevalence, risk factors and molecular epidemiology of Clostridium difficile infection in Kuwait over a 3-year period. Anaerobe, 2010. 16(6): p. 560-5.
    108. Schneeberg, A., et al., DNA microarray-based PCR ribotyping of Clostridium difficile. J Clin Microbiol, 2015. 53(2): p. 433-42.
    109. Lipovsek, S., G. Leitinger, and M. Rupnik, Ultrastructure of Clostridium difficile colonies. Anaerobe, 2013. 24: p. 66-70.
    110. Knight, D.R., et al., Two cases of Clostridium difficile infection in unrelated oncology patients attributable to a single clone of C. difficile PCR ribotype 126. JMM Case Reports, 2015. 2(3).
    111. Valiente, E., M.D. Cairns, and B.W. Wren, The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Clin Microbiol Infect, 2014. 20(5): p. 396-404.
    112. Knight, D.R. and T.V. Riley, Prevalence of gastrointestinal Clostridium difficile carriage in Australian sheep and lambs. Appl Environ Microbiol, 2013. 79(18): p. 5689-92.
    113. Knight, D.R., M.M. Squire, and T.V. Riley, Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Appl Environ Microbiol, 2015. 81(1): p. 119-23.
    114. Kurka, H., et al., Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation. PLoS One, 2014. 9(1): p. e86535.
    115. Dapa, T. and M. Unnikrishnan, Biofilm formation by Clostridium difficile. Gut Microbes, 2013. 4(5): p. 397-402.
    116. Romling, U., M.Y. Galperin, and M. Gomelsky, Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev, 2013. 77(1): p. 1-52.
    117. Bordeleau, E., et al., c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases. PLoS Genet, 2011. 7(3): p. e1002039.
    118. Spigaglia, P. and P. Mastrantonio, Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol, 2002. 40(9): p. 3470-5.
    119. Bakker, D., et al., TcdC does not significantly repress toxin expression in Clostridium difficile 630DeltaErm. PLoS One, 2012. 7(8): p. e43247.
    120. Cartman, S.T., et al., Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol, 2012. 78(13): p. 4683-90.
    121. Lanis, J.M., et al., TcdB from hypervirulent Clostridium difficile exhibits increased efficiency of autoprocessing. Mol Microbiol, 2012. 84(1): p. 66-76.
    122. Lanis, J.M., S. Barua, and J.D. Ballard, Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile. PLoS Pathog, 2010. 6(8): p. e1001061.

    下載圖示 校內:2020-08-24公開
    校外:2020-08-24公開
    QR CODE