簡易檢索 / 詳目顯示

研究生: 伍浩立
Wu, Hao-Li
論文名稱: 基於慣性感測器之個人步態模型分析系統 應用於阿茲海默氏症
Individual Gait Model Analysis System Based on Inertial Sensors for Alzheimer’s Disease Patients
指導教授: 詹寶珠
Chung, Pau-Choo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 慣性感測器阿茲海默氏症隱藏式馬可夫模型步態參數
外文關鍵詞: Inertial sensor, Hidden Markov Model, Gait parameters
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人口老化的問題在全球是日益嚴重,不僅造成醫療的龐大的負擔,同時也是社會一大負擔。失智症是其中一項很重要的問題,它會造成老人記憶力衰退、注意力不集中、甚至是喪失工作的能力等等問題。因此,健康照護顯然變得如此重要。如何有效地檢測出老年痴呆症則被熱烈的討論與提出方法。正因如此,大多數的文獻也著重在利用影像與慣性感測器來測量外在行為與心智功能之間的關聯性。本篇論文即是提出一個在三軸慣性感測器的測量方法下,使用隱藏式馬可夫模型來尋找步伐上面的種種特徵。分析個人化之下,正常與非正常的步伐的差異程度,配合神經心理學測驗,輔助醫務人員檢測阿茲海默氏症者。結果也顯示,在隱藏式馬可夫模型的描述下,更能突顯正常與非正常步伐之間的差異程度。未來也期盼這樣簡單的測量方式可以廣泛應用於居家的檢測,幫助更多的老年人提早發現失智的潛在危機,減輕社會大眾的負擔。

    The problem of aging population is getting worse in the world. It is not only huge medical burden but also social burden. Dementia is one of the important problems and it makes deep fading of memory, attention, and incapacity, etc. Therefore, the health care becomes more important. How to effectively detect dementia needs to be proposed. Accordingly, most research focus on the relationship between the cognition and behavior using video or inertial sensors. This thesis proposed a series of methods to analyze the association using an accelerometer and a gyroscope and to find the features using Hidden Markov model (HMM). Analyze the normal and abnormal walking via sensor mounted on the foot, mapping to the neuropsychological tests. Help medical staff to detect the mild Alzheimer's disease which is common one of the dementia, and classify a participant. Results show that the score of the HMM is significant differences between normal control and Alzheimer’s disease in our walking tests. In the future, wish a simple walking detection method by subjects themselves using inertial sensors could be widely used.

    摘要 i Abstract ii 誌 謝 iii Contents iv List of Tables vi List of Figures vii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Purpose of the Study 4 1.4 Organization of the Thesis 5 Chapter 2 Experimental Design 6 2.1 Neuropsychological Test Performance 6 2.1.1 Mini-Mental State Examination 6 2.1.2 Cognitive Abilities Screening Instrument 7 2.2 Device Introduction 8 2.2.1 Inertial-Sensor-Based Wearable Device 8 2.2.2 Force Sensors 9 2.3 Gait Experiment Environment Setting 10 2.3.1 Single-Task Walking Test 11 2.3.2 Dual-Task Walking Test 11 Chapter 3 Gait States Detection Algorithm 12 3.1 Gait Definition 13 3.2 Gait Period Detection 18 3.2.1 Calibration and Low-Pass Filtering 18 3.2.2 Gait Forward Detection 21 3.2.3 Swing-Point and Stance-Point Detection 24 3.2.4 The Phases of Swing and Stance Period 29 3.3 Gait Parameters 34 Chapter 4 Individual Gait Model System 37 4.1 Hidden Markov Model (HMM) 38 4.1.1 State Design 39 4.1.2 Observations Design 40 4.1.3 Score Calculating Method 42 4.1.4 One-step Analysis Method 45 4.2 Markov Chain: Transition Matrix 48 4.3 Model Selection 49 Chapter 5 Experiment Results 51 5.1 Participants 51 5.2 Gait Parameters Results 53 5.2.1 Single-Task 53 5.2.2 Dual-Task 54 5.3 Individual Gait Model Results 55 5.4 Discussion 60 5.4.1 Body Weight Influence 60 5.4.2 The Gait Flaw Intersection of AD and HC 62 5.4.3 One-step Analysis Results 65 Chapter 6 Conclusions and Future Work 67 6.1 Conclusions 67 6.2 Future Work 68 Reference 70

    [1] L. E. Norton, P. F. Malloy, and S. Salloway, “The impact of behavioral symptoms on activities of daily living in patients with dementia,” American Journal of Geriatric Psychiatry, vol. 9, no. 1, pp. 41-48, 2001.
    [2] H. Förstl and A. Kurz, “Clinical features of Alzheimer’s disease,” European Archives of Psychiatry and Clinical Neuroscience, vol. 249, no. 6, pp. 288-290, 1999.
    [3] A. H. Snijders, C. C. Verstappen, M. Munneke, and B. R. Bloem, “Assessing the interplay between cognition and gait in the clinical setting,” Journal of Neural Transmission, vol. 114, no. 10, pp. 1315-1321, 2007.
    [4] A. F. Pettersson, E. Olsson, and L. O. Wahlund, “Motor function in subjects with mild cognitive impairment and early Alzheimer’s disease,” Dementia and Geriatric Cognitive Disorders, vol. 19, no. 5-6, pp. 299-304, 2005.
    [5] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Rabins, K. Ritchie, M. Rossor, L. Thal, and B. Winblad, “Current concepts in mild cognitive impairment,” Archives of Neurology, vol. 58, no. 12, pp. 1985-1992, 2001.
    [6] T. Ijmker and C. J. C. Lamoth, “Gait and cognition: The relationship between gait stability and variability with executive function in persons with and without dementia,” Gait & Posture, vol. 35, no. 1, pp. 126-130, 2012.
    [7] G. Allali, M. Meulen, and F. Assal, “Gait and cognition: The impact of executive function,” Schweizer Archiv fur Neurologie und Psychiatrie, vol. 161, no. 6, pp. 195-199, 2010.
    [8] N. K. Nadkarni, E. Mawji, W. E. McIlroy, and S. E. Black, “Spatial and temporal gait parameters in Alzheimer’s disease and aging,” Gait & Posture, vol. 30, no. 4, pp. 452-454, 2009.
    [9] A. Shumway-Cook, M. Woolacott, K. A. Kerns, and M. Baldwin, “The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls,” Journal of Gerontology, vol. 52, no. 4, pp. 232-240, 1997.
    [10] W. Ta-Sen, H. Chiu-Jung, C. Shen-Kai, G. Lan-Yuen, and W. Wen-Lan, “Effects of Age on Attentional Demands and Postural Control of Obstacle Crossing Evidence from a Dualtask Approach,” Journal of Medical and Biological Engineering, vol. 32, no. 1, pp. 36-41, 2011.
    [11] T. M. Parker, L. R. Osternig, L.Heng-Ju, P. van Donkelaar, and C. Li-Shan, “The effect of divided attention on gait stability following concussion,” Clinical Biomechanics, vol. 20, no. 4, pp. 389-395, 2005.
    [12] P. L. Sheridan, J. Solomont, N. Kowall, and J. M. Hausdorff, “Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer's disease,” Journal of the American Geriatrics Society, vol. 51, no. 11, pp. 1633-1637, 2003.
    [13] C. J. Lamoth, F. J. Deudekom, J. P. Campen, B. A. Appels, O. J. Vries, and M. Pijnappels, “Gait stability and variability measures show effects of impaired cognition and dual-tasking in frail people,” Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 1, pp. 1-9, 2011.
    [14] G. S. P. Mok, W. Yi-Ying, L. Kun-Mu, W. Jay, C. Liang-Kuang, and W. Tung-Hsin, “Evaluation of the screening power of Cognitive Abilities Screening Instrument for probable Alzheimer's disease using voxel-based morphometry,” Clinical Imaging, vol. 36, no. 1, pp. 46-53, 2012.
    [15] P. D. Brown, J. C. Buckner, J. O’Fallon, N. L. Iturria, B. P. O’NEILL, C. A. Brown, B. W. Scheithauer, R. P. Dinapoli, R. M. Arusell, W. J. Curran, R. Abrams, and E. G. Shaw, “Importance of baseline mini-mental state examination as a prognostic factor for patients with low-grade glioma,” Journal of Radiation Oncology, vol. 59, no. 1, pp. 117-125, 2004.
    [16] Y. Shibamoto, F. Baba, K. Oda, S. Hayashi, M. Kokubo, S. Ishihara, Y. Itoh, H. Ogino, and M. Koizumi, “Incidence of brain atrophy and decline in Mini-Mental State Examination Score after whole-brain radiotherapy in patients with brain metastases: A prospective study,” Journal of Radiation Oncology, vol. 72, no. 4, pp. 1168-1173, 2008.
    [17] A. M. Crizzle, S. Classena, M. Bédardb, D. Lanforda, and S. Wintera, “MMSE as a predictor of on-road driving performance in community dwelling older drivers,” Accident Analysis and Prevention, vol. 49, no. 1, pp. 287-292, 2012.
    [18] M. F. Folstein, S. E. Folstein, and P. R. McHugh, “«Mini-mental state»: A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189-198, 1975.
    [19] E. L. Teng, K. Hasegawa, A. Homma, Y. Imai, E. Larson, A. Graves, K. Sugimoto, T. Yamaguchi, H. Sasaki, D. Chiu, and L. R. White, “The cognitive abilities screening instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia,” International Psychogeriatrics, vol. 6, no. 1, pp. 45-58, 1994.
    [20] L. White, H. Petrovitch, G. W. Ross, K. H. Masaki, R. D. Abbott, E. L. Teng, B. L. Rodriguez, P. L. Blanchette, R. J. Havlik, G. Wergowske, D. Chiu, D. J. Foley, C. Murdaugh, and J. D. Curb, “Prevalence of dementia in older Japanese-American men in Hawaii,” Journal of American medical Association, vol. 276, no. 12, pp. 955-960, 1996.
    [21] A. B. Graves, E. B. Larson, S. D. Edland, J. D. Bowen, W. C. Mccormick, S. M. Mccurry, M. M. Rice, A. Wenzlow, and J. M. Uomoto, “Prevalence of dementia and its subtypes in the Japanese American population of King County, Washington State,” American Journal of Epidemiology, vol. 144, no. 8, pp. 760-771, 1996.
    [22] D. Maquet, F. Lekeu, E. Warzee, S. Gillain, V. Wojtasik, E. Salmon, J. Petermans, and J. L. Croisier, “Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer’s disease:
    Simple versus dual task: a preliminary report,” Clinical Physiology and Functional Imaging, vol. 30, no. 1, pp. 51-56, 2010.
    [23] L. Mau-Roung, H. Hei-Fen, H. Ming-Hsia, W, Hong-Dar, W. Yi-Wei, and H. Fu-Chao, “Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and tinetti balance measures in community-dwelling older people,” Journal of the American Geriatrics Society, vol. 52, no. 8, pp. 1343-1348, 2004.
    [24] S. Gillain, E. Warzee, F. Lekeu, V. Wojtasik, D. Maquet, J.-L. Croisier, E. Salmon, and J. Petermans, “The value of instrumental gait analysis in elderly healthy, MCI or Alzheimer’s disease subjects and a comparison with other clinical tests used in single and dual-task conditions,” Ann Phys Rehabil Med, vol. 52, no. 6, pp. 456-474, 2009.
    [25] JACQUELIN P. and JUDITH M. B. (2010): Gait Analysis: Normal and Pathological Function. USA, SLACK Incorporated.
    [26] S.Godha and G.Lachapelle, “Foot mounted inertial system for pedestrian navigation,” Measurement Science and Technology, vol. 19, no. 7, p. 075202, 2008, doi: 10.1088/0957-0233/19/7/075202.
    [27] D. Kotiadis, H. J. Hermens, and P. H. Veltink, “Inertial Gait Phase Detection for control of a drop foot stimulator: Inertial sensing for gait phase detection,” Medical Engineering & Physics, vol. 32, no. 4, pp. 287-297, 2010.
    [28] T. Keller, S. Mangold, M. R. Popovic, V. Dietz, and M. Morari, “A Reliable Gyroscope-Based Gait-Phase Detection Sensor Embedded in a Shoe Insole,” Sensors Journal, vol. 4, no. 2, pp. 268-274, 2004.
    [29] J.-A. Lee, S.-H. Cho, Y.-J. Lee, H.-K. Yang, and J.-W. Lee, “Portable activity monitoring system for temporal parameters of gait cycles,” J. Med. Syst., vol. 34, pp. 959–966, 2010.
    [30] J. S. Wang, Y. L. Hsu, and J. N. Liu, “An inertial-measurement-unit-based pen with a trajectory reconstruction algorithm and its applications,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3508-3521, 2010.
    [31] Z. F. Syed, P. Aggarwal, C. Goodall, X. Niu, and N. El-Sheimy, “A new multi-position calibration method for MEMS inertial navigation systems,” Measurement Science & Technology, vol. 18, no. 7, pp. 1897-1907, 2007.
    [32] B. R. Greene, D. McGrath, R. O’Neill, J. O’Donovan, A. Burns, and B. Caulfield, “An adaptive gyroscope-based algorithm for temporal gait analysis,” Medical & Biological Engineering & Computing, vol. 48, no. 12, pp. 1251-1260, 2010.
    [33] M. Angelo, C. Martelloni, S. Scapellato, and F. Cavallo, “Assessment of walking features from foot inertial sensing,” IEEE Trans. Biomed. Eng., vol. 52, no. 3, pp. 486-494, 2005.
    [34] K. Aminian, B. Mariani, A. Paraschiv-Ionescu, C. Hoskovec, C. Bula, J. Penders, C. Tacconi, and F. Marcellini, “Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes,” Engineering in Medicine and Biology Society, 2011, pp. 5820-5823.
    [35] B. Mariani, C. Hoskovec, S. Rochat, C. Bula, J. Penders, and K. Aminian, “3D gait assessment in young and elderly subjects using foot-worn inertial sensors,” Journal of Biomechanics, vol. 43, no. 15, pp. 2999-3006, 2010.
    [36] F. Cavallo, A. M. Sabatini, and V. Genovese, “A step toward GPS/INS personal navigation systems: Real-time assessment of gait by foot inertial sensing,” Intelligent Robots and Systems, 2005, pp. 1187-1191.
    [37] F. Bugane, M. G. Benedetti, G. Casadio, S. Attala, F. Biagi, M. Manca, and A. Leardini, “Estimation of spatial-temporal gait parameters in level walking based on a single accelerometer: Validation on normal subjects by standard gait analysis,” Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 129-137, 2012.
    [38] L. Jung-Ah, C. Sang-Hyun, L. Jeong-Whan, L. Kang-Hwi, and Y. Heui-Kyung, “Wearable accelerometer system for measuring the temporal parameters of gait,” Engineering in Medicine and Biology Society, 2007, pp. 483-486.
    [39] J. Bae and M. Tomizuka, “Gait phase analysis based on a Hidden Markov Model,” Mechatronics, vol. 21, no. 6, pp. 961-970, 2011.
    [40] P. DeVita and T. Hortobagyi, “Obesity is not associated with increased knee joint torque and power during level walking,” Journal of Biomechanics, vol. 36, no. 9, pp.1355-1362, 2003.
    [41] S. Ko, S. Stenholm, and L. Ferrucci, “Characteristic gait patterns in older adults with obesity—Results from the Baltimore Longitudinal Study of Aging,” Journal of Biomechanics, vol. 43, no. 6, pp. 1104-1110, 2010.
    [42] E. M. Russell, B. Braun, and J. Hamill, “Does stride length influence metabolic cost and biomechanical risk factors for knee osteoarthritis in obese women?,” Clinical Biomechanics, vol. 25, no. 5, pp. 438-443, 2010.
    [43] A. H. Hansen and D. S. Childress, “Effects of adding weight to the torso on roll-over characteristics of walking,” Journal of Rehabilitation Research and Development, vol. 42, no. 3, pp. 381-390, 2005.
    [44] X. Wu, T. E. Lockhart, and H. T. Yeoh, “Effects of obesity on slip-induced fall risks among young male adults,” Journal of Biomechanics, vol. 45, no. 6, pp. 1042-1047, 2012.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE