簡易檢索 / 詳目顯示

研究生: 張齊
Chi-Chang,
論文名稱: 離岸風機支撐結構行為受地震載重之研究
Investigation of offshore wind turbine structure behavior under seismic loads
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 98
中文關鍵詞: 非線性土壤結構互制有限元素法鋼結構設計桿件力SHAKE91
外文關鍵詞: Nonlinearity, Soil-structure interaction, Finite element method, Steel structure design, Member force, SHAKE91
相關次數: 點閱:122下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為考慮土壤之材料行為為非線性之下,以三維有限元素網格模擬土壤-結構互制之行為,並比較土壤為均質情況下砂土與黏土之差異。本論文將使用SHAKE91分析軟體輸入Diamond-Height測站所量測到的加速度資料於岩盤上部位置,作為震源進行分析,再將得到之不同土層振動歷時輸入至土壤網格進行動態分析。論文中以兩種不同之土壤材料作為模擬互制行為之土壤,以得知不同土壤材料行為下對於離岸風機上部結構行為之影響。最後得到風機上部結構之桿件內力,根據現行的API-LRFD離岸風機鋼結構設計規範評估其安全性。在本論文中,使用樑元素模擬基樁和風機上部結構,使用p-y、t-z、Q-z 元素去模擬土壤的行為。除此之外,鋼結構設計之研究也是本論文的重點,包含了張力、壓力、彎矩、剪力、水壓力、組合受力桿件之設計,這些桿件以及土壤元素經過數值與理論的比較,是相互吻合的

    The main purpose of this thesis is to perform the soil-structure interaction analysis using the three-dimensional finite element analysis, where the comparison between the finite element results for homogeneous soils including clay and sand are achieved. This study uses SHAKE91 analysis software to transfer seismic accelerations which measured from the top of soil, and then applies the seismic load in the finite element analysis. The seismic load is the acceleration histories in different soil medium which simulated by SHAKE91, and the finite element software performs the integration of these accelerations to displacements for the dynamic analysis. There are two kinds of soil behaviors which are discussed for simulating the interaction behavior in the thesis. From the analyses in the study, the influences of the offshore upper structure behavior caused by the different materials of the soil behavior will be specified. Finally, we will get member forces in the finite element analysis. In the finite element model, beam elements are used to simulate the superstructure and piles, while p-y, t-z, and Q-z elements are used to simulate the soil behavior. This thesis then validates the results of these soil elements with the theoretical results. This thesis also contains the steel design procedures according to the code of the American Petroleum Engineering Institute (API) load resistance factor design (LRFD). The steel design includes tension, compression, bending, shear, hydrostatic, and combined-loading members. The validations of above members are achieved in this study, and all the design procedures are highly accurate.

    Content 摘要 II Abstract III 誌謝 IV List of Tables VII List of Figures IX Chapter 1 Introduction 1 1.1 Background and Purpose 1 1.2 Developed of lateral loading analysis for pile 1 1.3 Developed of axial loading analysis for pile 4 1.4 Developed of Finite element method (FEM) 5 1.5 Brief Account of Research 7 Chapter 2 Theory illustration 8 2.1. Introduction 8 2.2. Pile element 8 2.2.1 P-Y element 9 2.2.2 T-Z and Q-Z elements 13 2.3 Wave Propagation theory 15 2.4 Fast Fourier Transform (F.F.T) 16 Chapter 3 Site response analysis 26 3.1 One-dimensional spectrum analysis hypothesis and theory 26 3.2 Analysis Procedure 28 3.3 Shake91 theory model 28 3.4 Earthquake description 29 3.5 Soil model 29 3.6 Simulation results 30 Chapter4 Steel Structural Design 52 4.1 Axial tension member. 52 4.2 Axial compression member 52 4.2.1 Column Buckling 53 4.2.2 Local Buckling 54 4.3 Bending 55 4.4 Shear 56 4.4.1Beam Shear 56 4.4.2 Torsional Shear. 57 4.5 Hydrostatic Pressure 57 4.6 Cylindrical members under combined loads 59 4.6.1 Combined Axial Tension and Bending 59 4.6.2 Combined Axial Compression and Bending. 60 4.6.3 Combined Axial Tension, Bending and Hydrostatic Pressure 61 4.6.4 Combined Axial Compression, Bending and Hydrostatic Pressure 61 4.7 The introduction of subprogramWdesign.f90 62 Chapter 5 Structure analysis 76 5.1. Programs for Finite Element Analysis 76 5.1.1 Windturb program 76 5.1.2 Mmm program 77 5.1.3 AB program 77 5.1.4 AN program 77 5.1.5 AD program 77 5.2 Simulation results 78 Chapter 6 Conclusions and Future Works 87 6.1 Conclusions 87 6.2 Future Works 88 Reference 89 Appendix 91

    1. American Petroleum Institute (1987), “Recommended practice for planning, designing and constructing fixed offshore platforms,” API Recommended Practice 2A (RP-2A), 17th edition
    2. Baguelin, F., Frank, R., and Said, Y.H. (1977), “Theoretical study of lateral reaction mechanism of piles,” Geotechnique, Vol. 28, No.3, pp.405-434
    3. Coylc, H.M. and Sulaiman, I. H. (1967), “Skin Friction for Steel Piles in Sand,” J. of the Soil Mech. And Found. Div, ASCE, Vol. 93, No.6, Jan., pp.261-278
    4. Coylc, H.M. and Reese, L.C. (1967), “Load Transfer for Axially Loaded Piles in Clay,” J. of the Soil Mech. And Found. Div, ASCE, Vol.92, No.1, Jan., pp.1-26
    5. Desai. C.S. (1974), “Numerical Design Analysis for piles in Sand,” J of the Geot. Eng. Div., ASCE, Vol.100, No.6, pp.613-635
    6. DNV-OS-J101 (2011), Design of Offshore Wind Turbine Structures. Offshore Standard, Det Norske Veritas, Norway
    7. Fan, C.C. (1996), “the Behavior of Laterally Loaded Single Piles and Group Piles in Sand,” Ph.D. Thesis, University of Illinois at Urbana-Champaign
    8. Hadjian, A.H., R.B. Fallgren M.R. Tufenkijian (1992), “Dynamic soil-pile-structure interaction,” the state of the practice. Piles Under Dynamic Loads, S. Prakash (ed), ASCE (Geotechnical Special Publication 34):1-26
    9. Kraft, L.M. Jr., Ray, R.P. and Kagawa, T. (1981), “Theoretical t-z Curves,” J. of the Geot. Eng. Div., ASCE, Vol.107, No. 11, Nov., pp.1543-1561
    10. Poulus, H.G. and Davis. E.M. (1968), “The Settlement Behavior of Single Axially-Loaded Piles and Piers,” Geotechnique, Vol. 18.
    11. Reese, L.C. and Wang, S.T. (1989), “Documentation of Computer Program LPILE,” Ensoft, Inc. Astin, Texas
    12. Seed, H.B., and Reese, L.C. (1957), “The Action of Soft Clay Along Friction Piles,” Trans. ASCE, Vol.122, pp. 731-734
    13. Trochanis, A.M., Bielak, J. and Christiano, P. (1991) “Three-dimensional nonlinear study of piles,” Journal of Geotechnical Engineering, ASCE, Vol.117, No.3, pp.429-447.
    14. 王訓濤,周南山 (1988),承受側向力之樁基與土壤之互制作用,地工技術雜誌,第24 期,第39-48頁
    15. 洪世勳 (1996),場鑄群樁側向荷重-位移分析,國立台灣工業技術學院碩士論文

    無法下載圖示 校內:2021-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE