簡易檢索 / 詳目顯示

研究生: 林晁全
Lin, Chao-Chuan
論文名稱: 金/二氧化鈰丙酮蒸氣感測器之製備及其感測特性
Fabrication and Sensing Characteristics of Gold-decorated Ceria Based Acetone Vapor Sensors
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 電阻式感測器丙酮蒸氣二氧化鈰水熱法氧空缺溢流現象
外文關鍵詞: resistive type sensor, acetone vapor, ceria, hydrothermal, gold, oxygen vacancy, spill-over
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以二氧化鈰為感測材料,利用簡易水熱法製備電阻式丙酮蒸氣感測器,旨在探討製備變因對感測元件最適化之選擇。藉由改變感測溫度與丙酮蒸氣濃度觀察對感測特性之影響,並進一步解析丙酮蒸氣分子在元件上之吸附行為。本實驗製程中以氧化鋁為基材,首先以熱蒸鍍法鍍覆指叉式金電極,接著利用濺鍍法沉積二氧化鈰晶種層,再透過水熱法成長二氧化鈰薄膜層,最後將元件煅燒提高二氧化鈰之結晶性。
    在水熱法製備變因中探討水熱溫度對元件感測度的影響。由實驗結果顯示,當水熱溫度為150 ℃,反應時間為24小時(H150t24),感測元件具有最高的感測靈敏度及較短的響應時間及回復時間(125 ℃、5000 ppm下,S = 2.55,τa = 24 s,τb = 20 s)。此外,利用FT-IR定性分析比較各元件之間活性座之多寡。
    為了提升元件之感測效果,本研究透過添加金屬觸媒提升感測效能。由實驗結果發現,利用熱蒸鍍法將金奈米粒子(AuNPs)沉積在H150t24元件上,可以大幅提升元件之感測靈敏度。當金奈米粒子之沉積時間為100秒時,感測度(25 ℃、5000 ppm下,S = 143.77)為原始H150t24元件的56倍,除此之外,最佳感測溫度從125 ℃降至25 ℃,偵測極限亦由100 ppm降至10 ppm。另外,元件於室溫下感測不但有快速的響應及回復時間(25 ℃、5000 ppm下,τa=28 s,τb=27 s)也具有優異之氣體選擇性。
    進一步解析丙酮蒸氣在元件上之吸附行為,結果顯示此吸附行為可由Langmuir isotherm來描述,且暫態響應之初始反應速率符合一階動力模式。綜合上述,本研究製備出高感度、響應快速之丙酮蒸氣感測器,適合用於低溫或室溫下偵測。

    In this study, CeO2 and Au/CeO2 nanostructures were synthesized via simple hydrothermal method using cerium(III) nitrate hexahydrate and sodium hydroxide as starting materials and distilled water as solvent. Under optimal operating temperature (25 ℃), the response to 5000 ppm acetone of the Au/CeO2 sensor was 143.77, which was 55 times larger than that of the CeO2 sensor (125 ℃). Meanwhile, the low detection limit was decreased from 100 ppm to 10 ppm. The response and recovery time of the Au/CeO2 sensor were 28s and 27s, while that of the CeO2 sensor were 24 s and 20 s, respectively. The results revealed that Au/CeO2 sensor enhanced the sensing performances, which were attributed to the effect of the Au-doping. In addition, the behavior of acetone adsorbed on ceria was discussed.

    摘要 I Extended abstract II 誌謝 XV 總目錄 XVI 表目錄 XIX 圖目錄 XXI 第一章 緒論 1 1.1 前言 1 1.2 氣體感測器的發展 1 1.2.1 觸媒燃燒型感測器 (catalytic combustion sensor) 2 1.2.2 化學阻抗型感測器 (chemoresisitive sensor) 2 1.3 電阻式金屬氧化物氣體感測器 2 1.3.1 半導體式 3 1.3.2 偵測氣體之種類 3 1.4 二氧化鈰(Cerium oxide, CeO2)之簡介 4 1.4.1 物理性質 4 1.4.2 化學性質 4 1.5 研究動機與目的 5 第二章 原理 13 2.1 水熱法成長二氧化鈰 13 2.1.1 原理 13 2.1.2 水熱法之優點 13 2.1.3 反應機制 14 2.2 丙酮蒸氣感測機制 15 2.2.1 氧空缺 15 2.2.2 溫度對丙酮蒸氣的影響 15 2.2.3 感測機制 16 2.3 丙酮蒸氣吸附模式推導 17 2.3.1 熱力學模式 17 2.3.2 動力學模式 18 第三章 實驗 23 3.1 藥品與材料 23 3.1.1 藥品 23 3.1.2 材料 23 3.1.3 氣體 23 3.2 實驗設備與分析儀器 24 3.2.1 實驗設備 24 3.2.2 分析儀器 24 3.3 實驗步驟與分析方法 25 3.3.1 實驗步驟 25 3.3.1.1 元件之製備 25 3.3.1.2 丙酮蒸氣感測實驗 27 3.3.2 分析方法 28 第四章 水熱法製備變因及元件感測特性之探討 33 4.1 二氧化鈰製備變因對感測特性之影響 33 4.1.1 沉積晶種層之影響 33 4.1.2 水熱溫度對丙酮蒸氣感測之影響 33 4.1.2.1 穩態量測 33 4.1.2.2 暫態量測 34 4.1.3 二氧化鈰表面活性座與感測靈敏度之關係 34 4.1.4 結果與討論 35 4.2 H150t24元件感測特性之探討 36 4.2.1 操作溫度對元件電性之影響 36 4.2.2 穩態量測 36 4.2.2.1 I-V電性 36 4.2.2.2 感測靈敏度 37 4.2.2.3 熱力學分析 37 4.2.3 暫態量測 38 4.2.3.1 I-t量測 38 4.2.3.2 響應與回復時間 38 4.2.3.3 動力學分析 39 4.2.4 氣體選擇性 39 4.2.5 結果與討論 40 4.3 奈米金粒子修飾H150t24元件對感測特性之影響 41 4.3.1 金蒸鍍時間對元件感測特性之影響 41 4.3.2 H150t24Au100元件之感測特性 42 4.3.2.1 操作溫度與元件電性之關係 42 4.3.2.2 穩態量測 42 4.3.2.3 暫態量測 44 4.3.3 氣體選擇性 45 4.3.4 結果與討論 45 第五章 結論與建議 102 5.1 結論 102 5.2 建議 103 參考文獻 105

    [1]D. Zhang, Z. Yang, Z. Wu and G. Dong, “Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing”, Sensor Actuat. B-Chem., 283, 42-51, 2019.
    [2]C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor”, Sensor Actuat. B-Chem., 128, 320-325, 2007.
    [3]X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun Nanofibers Membranes for Highly Sensitive Optical Sensors”, Nano. Lett., 2, 1273-1275, 2002.
    [4]Y. Ye, S. Mao, S. He, X. Xu, X. Gao, Z. Wei, and S. Gunasekaran, “Ultrasensitive electrochemical genosensor for detection of CaMV35S gene with Fe3O4-Au@Ag nanoprobe”, Talanta, 206, 2020.
    [5]P. Tardy, J. R. Coulon, C. Lucat, and F. Menil, “Dynamic thermal conductivity sensor for gas detection”, Sensor Actuat. B-Chem., 98, 63-68, 2004.
    [6]H. I. Chen, C. H. Chang, H. H. Lu, I. P. Liu, W. C. Chen, B. Y. Ke, and W. C. Liu, “Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode”, Sensor Actuat. B-Chem., 262, 852-859, 2018.
    [7]T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, “Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration”, Sensor Actuat. B-Chem., 221, 491-498, 2015.
    [8]K. Ihokura, and J. Watson, “the stannic oxide gas sensor: principles and applications”.
    [9]W. H. Brattain, and J. Bardeen, “Surface properties of germanium”, Bell Syst. Tech. J., 32, 1-41, 1952.
    [10]G. Heiland, “Zum einfluss von wasserstoff auf die elektrische leitfähigkeit von ZnO-kristallen”, Z. Phys., 138, 459-464, 1954.
    [11]T. Seiyama, and A. Kato, “A new detector for gaseous components using semiconductor thin film”, Anal. Chem., 34, 1502-1503, 1962.
    [12]M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, and K. G. Ong, “Unprecedented ultra-high hydrogen gas sensitivity in doped titania nanotubes”, Nanotechnology, 17, 398-402, 2006.
    [13]S. Yan, X. Liang, H. Song, S. Ma, and Y. Lu, “Synthesis of porous CeO2-SnO2 nanosheets gas sensors with enhanced sensitivity”, Ceram. Int., 44, 358-363, 2018.
    [14]H. Aydin, F. Yakuphanoglu, and C. Aydin, “Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties”, J. Alloy Coumpd., 773, 802-811, 2019.
    [15]Z. Yuan, J. Zhang, F. Meng, Y. L. Rui Li, Y. Chang, J. Zhao, E. Han, and S. Wang, “Highly Sensitive Ammonia Sensors Based on Ag-Decorated WO3 Nanorods”, IEEE T. Nanotechnol., 17, 1252-1258, 2018.
    [16]C. C. Wang, S. A. Akbar, and M. J. Madou, “Ceramic based resisitive sensors”, J. Electroceram., 2, 273-282, 1998.
    [17]O. K. Varghese, and C. A. Grimes, “Metal oxide nanostructures as gas sensors”, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 5, 505-521, 2004.
    [18]J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, “Comparative Study on the Performance of Hybrid DFT Functionals in Highly Correlated Oxides: The Case of CeO2 and Ce2O3”, J. Chem. Theory Comput., 7, 56-65, 2011.
    [19]T. X. T. Sayle, S. C. Parker, and C. R. A. Catlow, “Surface Oxygen Vacancy Formation on CeO2 and Its Role in the Oxidation of Carbon-Monoxide”, J. Chem. Soc. Commun., 14, 977-978, 1992.
    [20]M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, and M. Salavati-Niasari, “Synthesis and characterization of CeO2 nanoparticles via hydrothermal route”, J. Ind. Eng. Chem., 21, 1301-1305, 2015.
    [21]台灣化學纖維股份有限公司合成酚場提供
    [22]C. W. Sun, H. Li, L. Q. Chen, “Nanostructured ceria-based materials: synthesis, properties, and applications”, Energy & Environmental Science, 5, 8475-8505, 2012.
    [23]Z. Li, J. Wang, S. Zhang, S. Yan, B. Cao, W. Shen, Z. Wang, and Y. Q. Fu, “Highly sensitive NH3 gas sensor based on the porous Ce0.94Zr0.06O2 nano-sheets with ppb level detection limit”, J. Alloy. Compd., 742, 712-720, 2018.
    [24]Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen, W. Liu, K. Sun, Y. Q. Fu, and Z. Wang, “Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature”, J. Alloy. Compd., 682, 647-653, 2016.
    [25]P. P. Ortega, L. S. R. Rocha, J. A. Cortés, M. A. Ramirez, C. Buono, M. A. Ponce, and A. Z. Simões, “Towards carbon monoxide sensors based on europium doped cerium oxide”, Appl. Surf. Sci., 464, 692-699, 2019.
    [26]C. A. Zito, T. M. Perfecto, and D. P. Volanti, “Porous CeO2 nanospheres for a room temperature triethylamine sensor under high humidity conditions”, Roy. Soc. Ch., 42, 15954-15961, 2018.
    [27]C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, and Y. Jiang, “A high-performance flexible gas sensor on self assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature”, Sensor Actuat. B-Chem., 261, 587-597, 2018.
    [28]J. Wang, Z. Li, S. Zhang, S. Yan, B. Cao, Z. Wang, and Y. Fu, “Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors”, Sensor Actuat. B-Chem., 255, 862-870, 2018.
    [29]L. Liao, H. X. Mai, Q. Yuan, H. B. Lu, J. C. Li, C. Liu, C. H. Yuan, Z. X. Shen, and T. Yu, “Single CeO2 Nanowire Gas Sensor Supported with Pt Nanocrystals: Gas Sensitiviy, Surface Bond States, and Chemical Mechanism”, J. Phys. Chem., 112, 9061-9065, 2008.
    [30]M. A. Chougule, S. T. Navale, Y. H. Navale, N. S. Ramgir, F. J. Stadler, G. D. Khuspe, and V. B. Patil, “Processing temperature dependent chemiresistive performance of spin coated cerium oxide films”, Mater. Chem. Phys., 224, 85-92, 2019.
    [31]N. Jayababu, M. Poloju, J. Shruthi, and M. V. Ramana Reddy, “NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors”, Roy. Soc. Ch., 9, 13765-13775, 2019.
    [32]T. Liu, X. Yang, C. Ma, X. Hao, X. Liang, F. Liu, F. Liu, C. Young, H. Zhu, and G. Lu, “CeO2-based mixed potential type acetone sensor using MMnO3 (M: Sr, Ca, La and Sm) sensing electrode”, Solid State Ionics, 317, 53-59, 2018.
    [33]L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, and P. Zhang, “Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning”, Sensor Actuat. B-Chem., 155, 782-788, 2011.
    [34]F. Li, T. Zhang, X. Gao, R. Wang, and B. Li, “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor”, Sensor Actuat. B-Chem., 252, 822-830, 2017.
    [35]J. Kaur, K. Anand, N. Kohli, A. Kaur, and R. C. Singh, “Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite”, Chem. Phys. Lett., 701, 115-125, 2018.
    [36]L. Li, H. Qin, L. Zhang, and J. Hu, “Ultrasensitive sensing performances to sub-ppb level acetone for Pd-functionalized SmFeO3 packed powder sensors”, Roy. Soc. Ch., 6, 60967-60974, 2016.
    [37]X. Xing, N. Chen, Y. Yang, R. Zhao, Z. Wang, Z. Wang, T. Zou, and Y. Wang, “Pt-Functionalized Nanoporous TiO2 Nanoparticles With Enhanced Gas Sensing Performances Toward Acetone”, Phys. Status Solidi A, 215, 1800100, 2018.
    [38]S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, and A. Tuantranont, “Flame-Made Nb-Doped TiO2 Ethanol and Acetone Sensors”, Sensors, 11, 472-484, 2011.
    [39]S. B. Upadhyay, R. K. Mishra, and P. P. Sahay, “Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping”, Sensor Actuat. B-Chem., 209, 368-376, 2015.
    [40]Y. A. Hadeethi, A. Umar, A. A. Ibrahim, S. H. Al-Heniti, R. Kumar, S. Baskoutas, and B. M. Raffah, “Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles”, Ceram. Int., 43, 6765-6770, 2017.
    [41]C. Zhao, W. Lan, H. Gong, J. Bai, R. Ramachandran, S. Liu, and F. Wang, “Highly sensitive acetone-sensing properties of Pt-decorated CuFe2O4 nanotubes prepared by electrospinning”, Ceram. Int., 44, 2856-2863, 2018.
    [42]Y. J. Jeong, W. T. Koo, J. S. Jang, D. H. Kim, H. J. Cho, and I. D. Kim, “Chitosan-templated Pt nanocatalyst loaded mesoporous SnO2 nanofibers: a superior chemiresistor toward acetone molecules”, Roy. Soc. Ch., 10, 13713-13721, 2018.
    [43]Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, and F. Li, “Highly Enhanced Acetone Sensing Performances of Porous and Single Crystalline ZnO Nanosheets: High Percentage of Exposed(100) Facets Working Together with Surface Modification with Pd Nanoparticles”, ACS Appl. Mater. Interfaces, 4, 3797-3804, 2012.
    [44]Y. H. Zhang, X. L. Cai, L. Z. Song, F. Y. Feng, J. Y. Ding, and F. L. Gong, “2D nanosheets-assembled Pd-ZnO microflowers for acetone sensor with enhanced performances”, J. Phys. Chem. Solids, 124, 330-335, 2019.
    [45]Y. Li, Tan Lv, F. X. Zhao, Q. Wang, X. X. Lian, and Y. L. Zou, “Enhanced Acetone-Sensing Performance of Au/ZnO Hybrids Synthesized Using a Solution Combustion Method”, Electron. Mater. Lett., 11, 890-895, 2015.
    [46]X. J. Wang, W. Wang, and Y. L. Liu, “Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO”, Sensor Actuat. B-Chem., 168, 39-45, 2012.
    [47]Y. Li, Z. Hua, Y. Wu, Y. Zeng, Z. Qiu, X. Tian, M. Wang, and E. Li, “Modified impregnation synthesis of Ru-loaded WO3 nanoparticles for acetone sensing”, Sensor Actuat. B-Chem., 265, 249-256, 2018.
    [48]C. Su, Y. Zou, X. Xu, L. Liu, Z. Liu, and L. Liu, “Ultrahigh sensitivity of Nd-doped porous α-Fe2O3 nanotubes to acetone”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 472, 63-68, 2015.
    [49]J. Y. Shen, L. Zhang, J. Ren, J. C. Wang, H. C. Yao, and Z. J. Li, “Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates”, Sensor Actuat. B-Chem., 239, 597-607, 2017.
    [50]G. Neri, “First Fifty Years of Chemoresisitive Gas Sensors”, Chemosensors, 3, 1-20, 2015.
    [51]H. Y. Lee, Y. C. Lee, Y. P. Hong, and K. H. Ko, “Interfacial reactions between RF sputtered CeO2 film and Si(1 0 0) substrate”, Appl. Surf. Sci., 228, 164-168, 2004.
    [52]J. B. R. Carvalho, R. S. Silva, I. Cesarino, S. A. S. Machado, K. I. B. Eguiluz, E. B. Cavalcanti, and G. R. Salazar-Banda, “Influence of the annealing temperature and metal salt precursor on the structural characteristics and anti-corrosion barrier effect of CeO2 sol-gel protective coatings of carbon steel”, Ceram. Int., 40, 13437-13446, 2014.
    [53]W. Wang, Q. Zhu, Q. Dai, and X. Wang, “Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: Effect of preparation method”, Chem. Eng. J., 307, 1037-1046, 2017.
    [54]H. I. Chen, and H. Y. Chang, “Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation”, Solid State Commun., 133, 593-598, 2005.
    [55]D. Barreca, A. Gasparotto, E. Tondello, C. Sada, S. Polizzi, and A. Benedetti, “Nucleation and Growth of Nanophasic CeO2 Thin Films by Plasma-Enhanced CVD”, Chem. Vap. Deposition, 9, 199-206, 2003.
    [56]K. Byrappa, and M. Yoshimura, “Handbook of Hydrothermal Technology”, Noyes Publications, New Jersey, USA, 2001.
    [57]D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots”, Adv. Mater., 22, 734-738, 2010.
    [58]S. A. Wohlgemuth, R. J. White, M. G. Willinger, M. M. Titirici, and M. Antonietti, “A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction”, Green Chem., 14, 1515-1523, 2012.
    [59]P. N. Kumta, C. Sfeir, D. H. Lee, D. Olton, and D. Choi, “Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization”, Acta. Biomaterialia, 1, 65-83, 2005.
    [60]H. Y. Chang, “Morphological Manipulation of Cerium Oxide Nanopowders- Preparation, Characterization, and Catalytic Oxidation Activity”, 成功大學化學工程學系博士論文, 2005.
    [61]M. Gudala, “Modelling of methane hydrate formation and dissociation in presence of surfactants by chemical affinity”, Department of Petroleum Enigineering, Indian School of Mines, Dhanbad, 2013.
    [62]P. L. Chen, and I. W. Chen, “Reactive Cerium(IV) Oxide Powders by the Homogeneous Pricipitation Method”, J. Am. Ceram., 76, 1577-1583, 1993.
    [63]S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, and T. Fukuda, “Structural Study on Monosize CeO2-X Nano-particles”, Nanostruct. Mater., 11, 141-147, 1999.
    [64]J. G. Li, T. Ikegami, Y. Wang, and T. Mori, “Reactive Ceria Nanopowders via Carbonate Precipitation”, J. Am. Ceram. Soc., 85, 2376-2378, 2002.
    [65]X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties, and photocatalytic applications”, Nanoscale, 5, 3601-3614, 2013.
    [66]X. Liu, K. Zhou, L. Wang, B. Wang, and Y. Li, “Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods”, J. Am. Chem. Soc., 131, 3140-3141, 2009.
    [67]A. Y. Mohamed, S. J. Lee, Y. Jang, J. S. Kim, C. S. Hwang, and D. Y. Cho, “X-ray spectroscopy study on the electronic structure of Sn-added p-type SnO films”, J. Phys., 32, 6, 2020.
    [68]C. A. Winkler, and C. N. Hinshelwood, “The thermal decomposition of acetone vapour”, Royal Soc. London, 149, 340-354, 1935.
    [69]S. D. Senanayake, W. O. Gordon, S. H. Overbury, and D. R. Mullins, “Adsorption and Reaction of Acetone over CeOx(111) Thin Films”, J. Phys Chem., 113, 6208-6214, 2009.
    [70]A. Gurlo, “Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen”, Chem. Phys. Chem., 7, 2041-2052, 2006.
    [71]N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensor”, J. Electroceram., 7, 143-167, 2001.
    [72]Y. Chen, H. Qin, X. Wang, L. Li, and J. Hu, “Acetone sensing properties and mechanism of nano-LaFeO3 thick-films”, Sensor Actuat. B-Chem., 235, 56-66, 2016.
    [73]F. C. Zhou, L. Yuan, S. H. Feng, Martyn A. McLachlan, and J. Q. Zhang, “Seed-Layer Effect on Highly Oriented ZnO Nanorod Array Fabrication”, Chinese Journal of Inorganic Chemistry, 34, 1655-1662, 2018.
    [74]J. N. Wang, W. L. Li, X. L. Li, and W. D. Fei, “Decreased crystallization temperature and improved leakage properties of BiFeO3 thin films induced by Bi2O3 seed layer”, Current Applied Physics, 13, 2070-2075, 2013.
    [75]Z. Jia, and A. Rousseau, “Sorbent track: Quantitative monitoring of adsorbed VOCs under in-situ plasma exposure”, Scientific Reports, 6, 31888, 2016.
    [76]M. J. Madou, and S. R. Morrison, “Chemical Sensing with Solid State Devices”, Academic press., Inc., London, 1989.
    [77]H. Ha, S. Yoon, K. An, and H. Y. Kim, “Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au-CeO2 Interface”, ACS Catal., 8, 11491-11501, 2018.
    [78]James Wei, “ADSORPTION AND CRACKING OF N-ALKANES OVER ZSM-5: NEGATIVE ACTIVATION ENERGY OF REACTION”, Chemical Engineering Science, 51, 2995-2999, 1996.
    [79]N. C. Wu, E. W. Shi, Y. Q. Zheng, and W. J. Li, “Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders”, J. Am. Ceram. Soc., 85, 2462-2468, 2002.

    下載圖示 校內:2025-07-21公開
    校外:2025-07-21公開
    QR CODE