| 研究生: |
林晁全 Lin, Chao-Chuan |
|---|---|
| 論文名稱: |
金/二氧化鈰丙酮蒸氣感測器之製備及其感測特性 Fabrication and Sensing Characteristics of Gold-decorated Ceria Based Acetone Vapor Sensors |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 電阻式感測器 、丙酮蒸氣 、二氧化鈰 、水熱法 、金 、氧空缺 、溢流現象 |
| 外文關鍵詞: | resistive type sensor, acetone vapor, ceria, hydrothermal, gold, oxygen vacancy, spill-over |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以二氧化鈰為感測材料,利用簡易水熱法製備電阻式丙酮蒸氣感測器,旨在探討製備變因對感測元件最適化之選擇。藉由改變感測溫度與丙酮蒸氣濃度觀察對感測特性之影響,並進一步解析丙酮蒸氣分子在元件上之吸附行為。本實驗製程中以氧化鋁為基材,首先以熱蒸鍍法鍍覆指叉式金電極,接著利用濺鍍法沉積二氧化鈰晶種層,再透過水熱法成長二氧化鈰薄膜層,最後將元件煅燒提高二氧化鈰之結晶性。
在水熱法製備變因中探討水熱溫度對元件感測度的影響。由實驗結果顯示,當水熱溫度為150 ℃,反應時間為24小時(H150t24),感測元件具有最高的感測靈敏度及較短的響應時間及回復時間(125 ℃、5000 ppm下,S = 2.55,τa = 24 s,τb = 20 s)。此外,利用FT-IR定性分析比較各元件之間活性座之多寡。
為了提升元件之感測效果,本研究透過添加金屬觸媒提升感測效能。由實驗結果發現,利用熱蒸鍍法將金奈米粒子(AuNPs)沉積在H150t24元件上,可以大幅提升元件之感測靈敏度。當金奈米粒子之沉積時間為100秒時,感測度(25 ℃、5000 ppm下,S = 143.77)為原始H150t24元件的56倍,除此之外,最佳感測溫度從125 ℃降至25 ℃,偵測極限亦由100 ppm降至10 ppm。另外,元件於室溫下感測不但有快速的響應及回復時間(25 ℃、5000 ppm下,τa=28 s,τb=27 s)也具有優異之氣體選擇性。
進一步解析丙酮蒸氣在元件上之吸附行為,結果顯示此吸附行為可由Langmuir isotherm來描述,且暫態響應之初始反應速率符合一階動力模式。綜合上述,本研究製備出高感度、響應快速之丙酮蒸氣感測器,適合用於低溫或室溫下偵測。
In this study, CeO2 and Au/CeO2 nanostructures were synthesized via simple hydrothermal method using cerium(III) nitrate hexahydrate and sodium hydroxide as starting materials and distilled water as solvent. Under optimal operating temperature (25 ℃), the response to 5000 ppm acetone of the Au/CeO2 sensor was 143.77, which was 55 times larger than that of the CeO2 sensor (125 ℃). Meanwhile, the low detection limit was decreased from 100 ppm to 10 ppm. The response and recovery time of the Au/CeO2 sensor were 28s and 27s, while that of the CeO2 sensor were 24 s and 20 s, respectively. The results revealed that Au/CeO2 sensor enhanced the sensing performances, which were attributed to the effect of the Au-doping. In addition, the behavior of acetone adsorbed on ceria was discussed.
[1]D. Zhang, Z. Yang, Z. Wu and G. Dong, “Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing”, Sensor Actuat. B-Chem., 283, 42-51, 2019.
[2]C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor”, Sensor Actuat. B-Chem., 128, 320-325, 2007.
[3]X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun Nanofibers Membranes for Highly Sensitive Optical Sensors”, Nano. Lett., 2, 1273-1275, 2002.
[4]Y. Ye, S. Mao, S. He, X. Xu, X. Gao, Z. Wei, and S. Gunasekaran, “Ultrasensitive electrochemical genosensor for detection of CaMV35S gene with Fe3O4-Au@Ag nanoprobe”, Talanta, 206, 2020.
[5]P. Tardy, J. R. Coulon, C. Lucat, and F. Menil, “Dynamic thermal conductivity sensor for gas detection”, Sensor Actuat. B-Chem., 98, 63-68, 2004.
[6]H. I. Chen, C. H. Chang, H. H. Lu, I. P. Liu, W. C. Chen, B. Y. Ke, and W. C. Liu, “Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode”, Sensor Actuat. B-Chem., 262, 852-859, 2018.
[7]T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, “Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration”, Sensor Actuat. B-Chem., 221, 491-498, 2015.
[8]K. Ihokura, and J. Watson, “the stannic oxide gas sensor: principles and applications”.
[9]W. H. Brattain, and J. Bardeen, “Surface properties of germanium”, Bell Syst. Tech. J., 32, 1-41, 1952.
[10]G. Heiland, “Zum einfluss von wasserstoff auf die elektrische leitfähigkeit von ZnO-kristallen”, Z. Phys., 138, 459-464, 1954.
[11]T. Seiyama, and A. Kato, “A new detector for gaseous components using semiconductor thin film”, Anal. Chem., 34, 1502-1503, 1962.
[12]M. Paulose, O. K. Varghese, G. K. Mor, C. A. Grimes, and K. G. Ong, “Unprecedented ultra-high hydrogen gas sensitivity in doped titania nanotubes”, Nanotechnology, 17, 398-402, 2006.
[13]S. Yan, X. Liang, H. Song, S. Ma, and Y. Lu, “Synthesis of porous CeO2-SnO2 nanosheets gas sensors with enhanced sensitivity”, Ceram. Int., 44, 358-363, 2018.
[14]H. Aydin, F. Yakuphanoglu, and C. Aydin, “Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties”, J. Alloy Coumpd., 773, 802-811, 2019.
[15]Z. Yuan, J. Zhang, F. Meng, Y. L. Rui Li, Y. Chang, J. Zhao, E. Han, and S. Wang, “Highly Sensitive Ammonia Sensors Based on Ag-Decorated WO3 Nanorods”, IEEE T. Nanotechnol., 17, 1252-1258, 2018.
[16]C. C. Wang, S. A. Akbar, and M. J. Madou, “Ceramic based resisitive sensors”, J. Electroceram., 2, 273-282, 1998.
[17]O. K. Varghese, and C. A. Grimes, “Metal oxide nanostructures as gas sensors”, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 5, 505-521, 2004.
[18]J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, “Comparative Study on the Performance of Hybrid DFT Functionals in Highly Correlated Oxides: The Case of CeO2 and Ce2O3”, J. Chem. Theory Comput., 7, 56-65, 2011.
[19]T. X. T. Sayle, S. C. Parker, and C. R. A. Catlow, “Surface Oxygen Vacancy Formation on CeO2 and Its Role in the Oxidation of Carbon-Monoxide”, J. Chem. Soc. Commun., 14, 977-978, 1992.
[20]M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, and M. Salavati-Niasari, “Synthesis and characterization of CeO2 nanoparticles via hydrothermal route”, J. Ind. Eng. Chem., 21, 1301-1305, 2015.
[21]台灣化學纖維股份有限公司合成酚場提供
[22]C. W. Sun, H. Li, L. Q. Chen, “Nanostructured ceria-based materials: synthesis, properties, and applications”, Energy & Environmental Science, 5, 8475-8505, 2012.
[23]Z. Li, J. Wang, S. Zhang, S. Yan, B. Cao, W. Shen, Z. Wang, and Y. Q. Fu, “Highly sensitive NH3 gas sensor based on the porous Ce0.94Zr0.06O2 nano-sheets with ppb level detection limit”, J. Alloy. Compd., 742, 712-720, 2018.
[24]Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen, W. Liu, K. Sun, Y. Q. Fu, and Z. Wang, “Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature”, J. Alloy. Compd., 682, 647-653, 2016.
[25]P. P. Ortega, L. S. R. Rocha, J. A. Cortés, M. A. Ramirez, C. Buono, M. A. Ponce, and A. Z. Simões, “Towards carbon monoxide sensors based on europium doped cerium oxide”, Appl. Surf. Sci., 464, 692-699, 2019.
[26]C. A. Zito, T. M. Perfecto, and D. P. Volanti, “Porous CeO2 nanospheres for a room temperature triethylamine sensor under high humidity conditions”, Roy. Soc. Ch., 42, 15954-15961, 2018.
[27]C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du, G. Xie, and Y. Jiang, “A high-performance flexible gas sensor on self assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature”, Sensor Actuat. B-Chem., 261, 587-597, 2018.
[28]J. Wang, Z. Li, S. Zhang, S. Yan, B. Cao, Z. Wang, and Y. Fu, “Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors”, Sensor Actuat. B-Chem., 255, 862-870, 2018.
[29]L. Liao, H. X. Mai, Q. Yuan, H. B. Lu, J. C. Li, C. Liu, C. H. Yuan, Z. X. Shen, and T. Yu, “Single CeO2 Nanowire Gas Sensor Supported with Pt Nanocrystals: Gas Sensitiviy, Surface Bond States, and Chemical Mechanism”, J. Phys. Chem., 112, 9061-9065, 2008.
[30]M. A. Chougule, S. T. Navale, Y. H. Navale, N. S. Ramgir, F. J. Stadler, G. D. Khuspe, and V. B. Patil, “Processing temperature dependent chemiresistive performance of spin coated cerium oxide films”, Mater. Chem. Phys., 224, 85-92, 2019.
[31]N. Jayababu, M. Poloju, J. Shruthi, and M. V. Ramana Reddy, “NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors”, Roy. Soc. Ch., 9, 13765-13775, 2019.
[32]T. Liu, X. Yang, C. Ma, X. Hao, X. Liang, F. Liu, F. Liu, C. Young, H. Zhu, and G. Lu, “CeO2-based mixed potential type acetone sensor using MMnO3 (M: Sr, Ca, La and Sm) sensing electrode”, Solid State Ionics, 317, 53-59, 2018.
[33]L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, and P. Zhang, “Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning”, Sensor Actuat. B-Chem., 155, 782-788, 2011.
[34]F. Li, T. Zhang, X. Gao, R. Wang, and B. Li, “Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor”, Sensor Actuat. B-Chem., 252, 822-830, 2017.
[35]J. Kaur, K. Anand, N. Kohli, A. Kaur, and R. C. Singh, “Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite”, Chem. Phys. Lett., 701, 115-125, 2018.
[36]L. Li, H. Qin, L. Zhang, and J. Hu, “Ultrasensitive sensing performances to sub-ppb level acetone for Pd-functionalized SmFeO3 packed powder sensors”, Roy. Soc. Ch., 6, 60967-60974, 2016.
[37]X. Xing, N. Chen, Y. Yang, R. Zhao, Z. Wang, Z. Wang, T. Zou, and Y. Wang, “Pt-Functionalized Nanoporous TiO2 Nanoparticles With Enhanced Gas Sensing Performances Toward Acetone”, Phys. Status Solidi A, 215, 1800100, 2018.
[38]S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, and A. Tuantranont, “Flame-Made Nb-Doped TiO2 Ethanol and Acetone Sensors”, Sensors, 11, 472-484, 2011.
[39]S. B. Upadhyay, R. K. Mishra, and P. P. Sahay, “Enhanced acetone response in co-precipitated WO3 nanostructures upon indium doping”, Sensor Actuat. B-Chem., 209, 368-376, 2015.
[40]Y. A. Hadeethi, A. Umar, A. A. Ibrahim, S. H. Al-Heniti, R. Kumar, S. Baskoutas, and B. M. Raffah, “Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles”, Ceram. Int., 43, 6765-6770, 2017.
[41]C. Zhao, W. Lan, H. Gong, J. Bai, R. Ramachandran, S. Liu, and F. Wang, “Highly sensitive acetone-sensing properties of Pt-decorated CuFe2O4 nanotubes prepared by electrospinning”, Ceram. Int., 44, 2856-2863, 2018.
[42]Y. J. Jeong, W. T. Koo, J. S. Jang, D. H. Kim, H. J. Cho, and I. D. Kim, “Chitosan-templated Pt nanocatalyst loaded mesoporous SnO2 nanofibers: a superior chemiresistor toward acetone molecules”, Roy. Soc. Ch., 10, 13713-13721, 2018.
[43]Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, and F. Li, “Highly Enhanced Acetone Sensing Performances of Porous and Single Crystalline ZnO Nanosheets: High Percentage of Exposed(100) Facets Working Together with Surface Modification with Pd Nanoparticles”, ACS Appl. Mater. Interfaces, 4, 3797-3804, 2012.
[44]Y. H. Zhang, X. L. Cai, L. Z. Song, F. Y. Feng, J. Y. Ding, and F. L. Gong, “2D nanosheets-assembled Pd-ZnO microflowers for acetone sensor with enhanced performances”, J. Phys. Chem. Solids, 124, 330-335, 2019.
[45]Y. Li, Tan Lv, F. X. Zhao, Q. Wang, X. X. Lian, and Y. L. Zou, “Enhanced Acetone-Sensing Performance of Au/ZnO Hybrids Synthesized Using a Solution Combustion Method”, Electron. Mater. Lett., 11, 890-895, 2015.
[46]X. J. Wang, W. Wang, and Y. L. Liu, “Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO”, Sensor Actuat. B-Chem., 168, 39-45, 2012.
[47]Y. Li, Z. Hua, Y. Wu, Y. Zeng, Z. Qiu, X. Tian, M. Wang, and E. Li, “Modified impregnation synthesis of Ru-loaded WO3 nanoparticles for acetone sensing”, Sensor Actuat. B-Chem., 265, 249-256, 2018.
[48]C. Su, Y. Zou, X. Xu, L. Liu, Z. Liu, and L. Liu, “Ultrahigh sensitivity of Nd-doped porous α-Fe2O3 nanotubes to acetone”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 472, 63-68, 2015.
[49]J. Y. Shen, L. Zhang, J. Ren, J. C. Wang, H. C. Yao, and Z. J. Li, “Highly enhanced acetone sensing performance of porous C-doped WO3 hollow spheres by carbon spheres as templates”, Sensor Actuat. B-Chem., 239, 597-607, 2017.
[50]G. Neri, “First Fifty Years of Chemoresisitive Gas Sensors”, Chemosensors, 3, 1-20, 2015.
[51]H. Y. Lee, Y. C. Lee, Y. P. Hong, and K. H. Ko, “Interfacial reactions between RF sputtered CeO2 film and Si(1 0 0) substrate”, Appl. Surf. Sci., 228, 164-168, 2004.
[52]J. B. R. Carvalho, R. S. Silva, I. Cesarino, S. A. S. Machado, K. I. B. Eguiluz, E. B. Cavalcanti, and G. R. Salazar-Banda, “Influence of the annealing temperature and metal salt precursor on the structural characteristics and anti-corrosion barrier effect of CeO2 sol-gel protective coatings of carbon steel”, Ceram. Int., 40, 13437-13446, 2014.
[53]W. Wang, Q. Zhu, Q. Dai, and X. Wang, “Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: Effect of preparation method”, Chem. Eng. J., 307, 1037-1046, 2017.
[54]H. I. Chen, and H. Y. Chang, “Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation”, Solid State Commun., 133, 593-598, 2005.
[55]D. Barreca, A. Gasparotto, E. Tondello, C. Sada, S. Polizzi, and A. Benedetti, “Nucleation and Growth of Nanophasic CeO2 Thin Films by Plasma-Enhanced CVD”, Chem. Vap. Deposition, 9, 199-206, 2003.
[56]K. Byrappa, and M. Yoshimura, “Handbook of Hydrothermal Technology”, Noyes Publications, New Jersey, USA, 2001.
[57]D. Pan, J. Zhang, Z. Li, and M. Wu, “Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots”, Adv. Mater., 22, 734-738, 2010.
[58]S. A. Wohlgemuth, R. J. White, M. G. Willinger, M. M. Titirici, and M. Antonietti, “A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction”, Green Chem., 14, 1515-1523, 2012.
[59]P. N. Kumta, C. Sfeir, D. H. Lee, D. Olton, and D. Choi, “Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization”, Acta. Biomaterialia, 1, 65-83, 2005.
[60]H. Y. Chang, “Morphological Manipulation of Cerium Oxide Nanopowders- Preparation, Characterization, and Catalytic Oxidation Activity”, 成功大學化學工程學系博士論文, 2005.
[61]M. Gudala, “Modelling of methane hydrate formation and dissociation in presence of surfactants by chemical affinity”, Department of Petroleum Enigineering, Indian School of Mines, Dhanbad, 2013.
[62]P. L. Chen, and I. W. Chen, “Reactive Cerium(IV) Oxide Powders by the Homogeneous Pricipitation Method”, J. Am. Ceram., 76, 1577-1583, 1993.
[63]S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, and T. Fukuda, “Structural Study on Monosize CeO2-X Nano-particles”, Nanostruct. Mater., 11, 141-147, 1999.
[64]J. G. Li, T. Ikegami, Y. Wang, and T. Mori, “Reactive Ceria Nanopowders via Carbonate Precipitation”, J. Am. Ceram. Soc., 85, 2376-2378, 2002.
[65]X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties, and photocatalytic applications”, Nanoscale, 5, 3601-3614, 2013.
[66]X. Liu, K. Zhou, L. Wang, B. Wang, and Y. Li, “Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods”, J. Am. Chem. Soc., 131, 3140-3141, 2009.
[67]A. Y. Mohamed, S. J. Lee, Y. Jang, J. S. Kim, C. S. Hwang, and D. Y. Cho, “X-ray spectroscopy study on the electronic structure of Sn-added p-type SnO films”, J. Phys., 32, 6, 2020.
[68]C. A. Winkler, and C. N. Hinshelwood, “The thermal decomposition of acetone vapour”, Royal Soc. London, 149, 340-354, 1935.
[69]S. D. Senanayake, W. O. Gordon, S. H. Overbury, and D. R. Mullins, “Adsorption and Reaction of Acetone over CeOx(111) Thin Films”, J. Phys Chem., 113, 6208-6214, 2009.
[70]A. Gurlo, “Interplay between O2 and SnO2: Oxygen Ionosorption and Spectroscopic Evidence for Adsorbed Oxygen”, Chem. Phys. Chem., 7, 2041-2052, 2006.
[71]N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensor”, J. Electroceram., 7, 143-167, 2001.
[72]Y. Chen, H. Qin, X. Wang, L. Li, and J. Hu, “Acetone sensing properties and mechanism of nano-LaFeO3 thick-films”, Sensor Actuat. B-Chem., 235, 56-66, 2016.
[73]F. C. Zhou, L. Yuan, S. H. Feng, Martyn A. McLachlan, and J. Q. Zhang, “Seed-Layer Effect on Highly Oriented ZnO Nanorod Array Fabrication”, Chinese Journal of Inorganic Chemistry, 34, 1655-1662, 2018.
[74]J. N. Wang, W. L. Li, X. L. Li, and W. D. Fei, “Decreased crystallization temperature and improved leakage properties of BiFeO3 thin films induced by Bi2O3 seed layer”, Current Applied Physics, 13, 2070-2075, 2013.
[75]Z. Jia, and A. Rousseau, “Sorbent track: Quantitative monitoring of adsorbed VOCs under in-situ plasma exposure”, Scientific Reports, 6, 31888, 2016.
[76]M. J. Madou, and S. R. Morrison, “Chemical Sensing with Solid State Devices”, Academic press., Inc., London, 1989.
[77]H. Ha, S. Yoon, K. An, and H. Y. Kim, “Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au-CeO2 Interface”, ACS Catal., 8, 11491-11501, 2018.
[78]James Wei, “ADSORPTION AND CRACKING OF N-ALKANES OVER ZSM-5: NEGATIVE ACTIVATION ENERGY OF REACTION”, Chemical Engineering Science, 51, 2995-2999, 1996.
[79]N. C. Wu, E. W. Shi, Y. Q. Zheng, and W. J. Li, “Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders”, J. Am. Ceram. Soc., 85, 2462-2468, 2002.