| 研究生: |
張煒詮 Chang, Wei-Chuan |
|---|---|
| 論文名稱: |
微機電製作之霧化器於螢光性粒子製備之研究 Investigation of MEMS-Based Micro Atomizers for Fluorescent Particle Preparation |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 微型霧化噴嘴 、氣助式 、液助式 、螢光粒子 |
| 外文關鍵詞: | micro atomizer, air-assisted spray, water-assisted spray, fluorescent particles |
| 相關次數: | 點閱:141 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用微機電技術製作微型噴霧霧化器,以矽晶圓及派熱克斯玻璃經陽極接合,主要目的是快速大量製造螢光性微米級粒子於粒子影像測速儀(Particle Image Velocimetry,PIV)使用。本研究之霧化方式可分為氣體輔助式與液體輔助式,分別會導致粒子的表面形貌與製作過程的差異性,並於製造顆粒時發現改變霧化操作壓力和不同的溶質溶劑重量百分比濃度,會影響到粒徑大小與分佈,研究發現隨著霧化氣體操作壓力增加,Dv90及平均粒徑(SMD)有降低之趨勢。同時再輔以螢光顯微鏡及拉曼瑩光光譜儀證實其瑩光性質,並以高解析電子顯微鏡(SEM)照片顯現出粒子型貌特性。
相較於傳統噴嘴,微型霧化器的製程時間相對快速、霧化操作壓力較低、設備和氣體消耗量方面花費成本較低,而本研究所製作出的螢光粒子與市售商品相較之下,其成本花費、取用便利性、及後續PIV觀測使用上,都不亞於市售商品。
The study applies MEMS-based micro atomizer to manufacture micro fluorescent particles for Particle Image Velocimetry(PIV)application. In this thesis, micro atomizer is fabricated by using anodic bonding of Si wafer and pyrex glass 7740. Micro atomizers are operated in either air-assisted or water-assisted spray ways which leads to different results in surface morphology and particle size distribution respectively. It is found that the median mean diameters Dv90 of average particle sizes and Sauter Mean Diameter all decrease with the increase of operation pressure. Additionally, the particle size and distribution are greatly affected by different solvent weight percentage of solution. In the meantime, fluorescent particles are characterized by using fluorescence microscopy, Raman fluorescence spectrometer and scanning electron microscope. SEM images show the particles manufactured by water-assisted way have much better surface morphology than the particles with air-assisted way. Compared with traditional commercial aerosol atomizer, MEMS-based micro atomizer requires small amount of operating gas consumption which leads to lower cost in fabrication. The fluorescent particles fabricated in this research are comparable to the commercial fluorescent particles, but with a much lower cost.
[1]A. H. Lefebvre,“Gas Turbine Combustion,Chapter10,” Hemisphere Publishing Corporation, New York, 1983.
[2]M. Raffel, “Particle image velocimetry : a practical guide. 2nd ed2007,” Springer-Verlag, Berlin, Heidelberg, New York, pp. 448, 1998.
[3]H. P. J. Veerman, R. J. W. den Boer and J. Westerweel, “Particle Image Velocimetry, Progress towards Industrial Application,” pp. 364-376, 2000.
[4]黃志偉,「使用PIV 技術診測進氣埠受調制之引擎缸內流場」,國立台灣科技大學機械工程技術研究所碩士論文,民國92年7月。
[5]R. Mei, “Velocity Fidelity of Flow Tracer Particles,” Experiments in Fluids, Vol. 22 pp. 1-13, 1996.
[6]R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[7]A. H. Lefebvre, “Gas Turbine Combustion,Chapter10,” Hemisphere Publishing Corporation, New York, 1983.
[8]N. Dombrowski and W. R. Johns, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” CES., Vol. 18, pp. 203-214, 1963.
[9]B. E. Stapper, W. A. Sowa, and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[10]R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp. 687-701, 1957.
[11]H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No. 8, pp. 61-92, 1982.
[12]S. Nukiyama and Y. Tanasawa, “Experiments on Atomization of Liquids in an Airstream,” Transaction of JSME, Vol. 5, No. 18, pp. 68-75, 1939.
[13]J. Gretzinger, Marshall, and W.R. Jr., “Characteristics of Pneumatic Atomization,” AIChE Journal, Vol. 7, No. 2, pp. 312-318, Jun. 1961.
[14]K.Y. Kim, Marshall, and W.R. Jr., “Drop-Size Distributions from Pneumatic Atomizers,” AIChE Journal, Vol. 17, No. 3, pp. 575-584, May 1971.
[15]A. A. Rizkalla and A.H. Lefebvre, “Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” ASME Journal of Engineering for Gas Turbines and Power, pp. 173-179, 1975.
[16]A. A. Rizkalla and A.H. Lefebvre, “The Influence of Air and Liquid Properties on Airblast Atomization,” ASME Journal of Fluids Engineering, Vol. 97, pp. 316-320, 1975
[17]J. E. Beck, A. H. Lefebvre and T. R. Koblish, “Liquid Sheet Disintegration by Impinging Air Streams,” Atomization and Sprays,Vol. 1, No. 2, pp. 155-170, 1991.
[18]J. E. Beck and A. H. Lefebvre, “Airblast Atomization at Conditions of Low Air Velocity,” Journal of Propulsion and Power, Vol. 7, No. 2, 1991.
[19]T. Sattelmayer and S. Witting, “Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,” ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp. 465-472, 1986.
[20]N.K. Rizk and A.H. Lefebvre, “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME, Vol. 106, July 1984.
[21]S. C. Kevin and A. H. Lefebvre, “Spray Cone Angle of Effervescent Atomizers,” Atomization and Sprays, Vol. 4, pp. 291-301, 1994.
[22]S. C. Kevin and A. H. Lefebvre, “Spray Cone Angle of Effervescent Atomizers,” Atomization and Sprays, Vol. 4, pp. 291-301, 1994.
[23]郭振展,「液態金屬在噴嘴低長寬比下之霧化特性」,成功大學航空太空工程研究所論文,民國92年7月。
[24]N. Ashgriz and P. Givi, “Binary Collision Dynamics of Fuel Droplets,” Heat and Fluid Flow, Vol. 8, No. 3, pp. 205-210, 1987.
[25]H. Chung, T. W. Kim, M. Kwin, I. C. Kwon, and S. Y. Jeong, “Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system,” Journal of Controlled Release, Vol. 71, pp. 339-350, 2001.
[26]S. E. Friberg and K. Larsson, “Food emulsions,” Marcel Dekker Inc., pp. 189-233,1997
[27]T. Hamouda, M. M. Hayes, Z. Cao, R. Tonda, K. Johnson, D. C.Wright, J. Brisker, and J. R. Baker, “A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species,” The Journal of Infectious Diseases, Vol. 180, pp. 1939-1949,1999.
[28]D. V. Hale, M. J. Hoover, and M. J. O’Neill, “Phase Change Material Handbook,” NASA CR, pp. 61358-61363, 1971.
[29]Takasi Nisisako, Toru Torii, and Toshiro Higuchi, “Droplet formation in a microchannel network,” Lab on a Chip, Vol. 2, pp. 24-26 , 2002.
[30]Zhihong Nie, Shengqing Xu, Minseok Seo, Patrick C. Lewis, and Eugenia Kumacheva, “Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors,” ACS, pp. 8058-8063, 2005.
[31]A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse Double Emulsions Generated from a Microcapillary Device,” Science, Vol. 308, pp. 537-541, 2005.
[32]K. B Albaughb, E. P. Cade, and D. H. Rasmussen, “Mechanisms Of Anodic Bonding Of Silicon To Pyrex Glass,” Solid-State Sensor and Actuator Workshop, Johns Hopkins APL Technical Digest, IEEE, 1998.
[33]D. Satas, “Web Processing and Con-verting Technology and Equipment,” Van Nostrand Reinhold CompanyInc., p. 246, 1984.
[34]C. Heidelberger, N. K. Chaudhuri, et al, “Fluorinated pyrimidines, a new class of tumor inhibitory compounds,” Nature, Vol. 179, pp. 663-666, 1957.
[35]謝俊億,「主動脈側接血泵之流場分析」,成功大學航空太空工程研究所論文,民國101年8月