簡易檢索 / 詳目顯示

研究生: 李信徵
Li, Xin-Zheng
論文名稱: 建構即時彈簧裝置夾量測系統之開發與應用
The Development and Application of a Real-time Measuring System for Constructing Spring Fixture
指導教授: 黃宇翔
Huang, Yeu-Shiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 熱壓製程量測系統分析彈簧裝置夾
外文關鍵詞: hot pressing process, measurement system analysis, spring fixture
相關次數: 點閱:113下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前國內汽車產業相關零配件的大多依循國際汽車特別工作小組(International Automotive Task Force, IATF)所發行的汽車產業品質管理系統要求,IATF 16949採用美國汽車工業行動協會(Automotive Industry Action Group, AIAG)所提出的量測系統分析(Measurement System Analysis, MSA)作為五大分析工具之一,MSA為國際公認標準並用來執行量測系統的可接受性的一套標準做法與程序。本研究藉由建構「即時彈簧裝置夾量測系統」,以符合制動帶的熱壓製程需求,將即時量測導入,能快速找出有問題的彈簧裝置夾,避免不良制動帶出廠後被客訴或退貨的風險。
    本研究選定汽車變速箱中的零件制動帶「熱壓製程」中使用關鍵壓縮荷重參數來進行量測,而壓縮荷重產生的來源就是彈簧裝置夾。選用雷射測距感測器偵測彈簧裝置夾壓縮之位移量變化,來替代萬能量測系統中的絕對位置回授。利用設定彈簧常數k值,並搭配虎克定律來建構即時彈簧裝置夾量測系統。
    應用量測系統分析進行萬能量測系統與彈簧裝置夾量測系統來分析,經%GR&R、NC與P⁄T評估後判定彈簧裝置夾量測系統合格且符合MSA要求,再由彈簧常數k比較兩種系統重差異為何,其研究結果彈簧裝置夾量測系統與萬能量測系統數值最大上誤差率約9.59%,最大下誤差率約-5.60%,且量測時間提升8倍,若每年量測10,000支,預估年省NT$437,500,另外改善了萬能量測系統五個缺點,又新增三個功能,制定彈簧裝置夾管制流程,協助現場管理人員調整的參考與方向,有效避免不良品流出,免除客戶投訴,提升制動帶熱壓製程穩定度及良率提升。

    Most automotive industry for parts and accessories in Taiwan follows the regulations for quality control issued by International Automotive Task Force (IATF). The IATF 16949 standard adopts Automotive Industry Action Group’s Measurement System Analysis (MSA) as one of its measurement tools. MSA is an international standard, and a standard procedure for measuring system acceptability. This study designs a real-time measuring system for spring fixture to meet band’s production mode. By bringing in the real-time measuring system, problematic spring fixtures could be quickly detected, and thus reduces the risk of customer complaints or return of dysfunctional hot pressing brake band.
    This study investigates brake band during hot pressing process and measure the compression load parameters, which originates from spring fixture. The displacement of spring fixtures is measured by laser rangefinder, in place of universal measuring machine. By setting the spring constant k value, and combining with Hook’ Law to design a real-time measuring system for spring fixtures.
    Using MSA to compare measurements of universal measuring machine with that of the real-time measuring system. Statistical evaluations confirm that the real-time measuring system meets IATF 16949’s MSA requirements. By comparing spring constant k of both systems, the results showed that upper tolerance is 9.59% and lower tolerance is -5.60%, and measuring time speeds up 8 times for the real-time measuring system. For 10,000 measurements, we could save up to 437,500 NT per year. This study concluded that real-time measuring system can reduce dysfunctional products and customer complaints, and also can improve manufacturing stability and product yield.

    摘要 I Extended Abstract II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 1 第三節 研究目的 2 第四節 研究範圍與對象 3 第五節 研究流程 3 第二章 文獻探討 5 第一節 自動變速箱介紹 5 第二節 彈簧量測介紹 11 第三節 量測系統分析 14 第四節 量測系統變異種類 17 第五節 量測系統評估基準 21 第六節 小結 23 第三章 建構即時彈簧裝置夾量測系統 24 第一節 問題描述 24 第二節 建構即時彈簧裝置夾量測系統 29 第三節 量測系統分析步驟 36 第四節 預期效益 43 第四章 量測系統分析與實證 44 第一節 萬能量測系統分析 44 第二節 彈簧裝置夾量測系統分析 47 第三節 彈簧常數k比較分析 52 第四節 彈簧裝置夾量測系統實證與管制流程設定 53 第五節 綜合比較分析 55 第五章 結論與未來方向 57 第一節 研究貢獻 57 第二節 未來方向 58 參考文獻 60 附錄 A 63 附錄 B 68

    英文部份
    Araújo, L. M. M., Paiva, R. G. N., Peruchi, R. S., Junior, P. R., & de Freitas Gomes, J.H.(2019). New indicators for measurement error detection in GR&R studies. Measurement, 140, 557-564.
    Beckert, S. F., & Paim, W. S. (2017). Critical analysis of the acceptance criteria used in measurement systems evaluation. International Journal of Metrology and Quality Engineering, 8, 23.
    Çoban, A., & Çoban, N. (2020). Determining of the spring constant using Arduino. Physics Education, 55(6), 065028.
    Eisenhart, C. (1963). “Realistic Evaluation of the Precision and Accuracy of Instrument Calibration Systems.” Journal of Research of the National Bureau of Standards-C, Engineering and Instrumentation 67C(2): 161-187.
    Hristov, H. M., Kirilov, D. G., & Angelov, V. V. (2019, September). Study and Evaluation of Air-electronic gauges via Methodology MSA. In 2019 XXIX International Scientific Symposium" Metrology and Metrology Assurance"(MMA) (pp. 1-4). IEEE.
    Khedkar, Y. M., Mahajan, O. L., & Khomane, S. M. (2020). MANUFACTURING AND TESTING OF HYDRAULIC VALVE SPRING TESTING MACHINE.
    Kumar, P., Tisekar, N., Sakunde, A., & Patil, S. (2017, October). Design of Spring Testing Machine. In International Conference on Advances in Thermal Systems, Materials and Design Engineering (ATSMDE2017).
    Ma, J., Huang, H., & Huang, J. (2013). Characteristics analysis and testing of SMA spring actuator. Advances in Materials Science and Engineering, 2013.
    Marasch, M., Houtz, A., & Hildebrand, J. (2018, January). Application of DFMEA to Improve Producibility of Legacy Products. In 2018 Annual Reliability and Maintainability Symposium (RAMS) (pp. 1-6). IEEE.
    MSA Work Group. (2010). Measurement System Analysis, Reference Manual, fourth ed. Chrysler Group LLC, Ford Motors Corporation.
    Moheb-Alizadeh, H. (2014). Capability analysis of the variable measurement system with fuzzy data. Applied Mathematical Modelling, 38(19-20), 4559-4573.
    Montgomery, D. C., & Runger, G. C. (1993). Gauge capability and designed experiments. Part I: basic methods. Quality Engineering, 6(1), 115-135.
    Montgomery, D. C., & Runger, G. C. (1993). Gauge capability analysis and designed experiments. Part II: experimental design models and variance component estimation. Quality Engineering, 6(2), 289-305.
    Montgomery, D. C. (2013). Introduction to statistical quality control (7th ed.). New York, NY:John Wiley &Sons.
    Mott, R. L. (2013). Machine elements in mechanical design. Pearson Higher Ed.
    Ragen, R. W., & Rodaway, K. S. (1966). U.S. Patent No. 3,285,065. Washington, DC: U.S. Patent and Trademark Office.
    Saikaew, C. (2018). An implementation of measurement system analysis for assessment of machine and part variations in turning operation. Measurement, 118, 246-252.
    Yeh, T. M., Pai, F. Y., & Huang, C. W. (2015). Using fuzzy theory in% GR&R and NDC of measurement system analysis. Engineering, 7(04), 161.
    Yu, Y., Liu, Y., Gong, M., Xu, Z., & Fang, Y. (2017). R&R study of using a stress wave timer to measure the elastic modulus of structural dimension lumber. Measurement, 95, 293-296.

    中文部份
    左成基、楊明欽(2009),自動變速箱,全華圖書股份有限公司。
    楊朝盛(2020),測量系統分析(MSA)實用指南,機械工業出版社。
    何達義(2021),自動變速箱與故障排除,台科大圖書股份有限公司。
    行政院原子能委員會研究所(2008),彈簧性能檢測裝置,中華名國專利號I318770。
    台北:經濟部智慧財產局。

    網頁部份
    維基百科 ( 2021年02月27日) 羅伯特·虎克。維基百科
    https://zh.wikipedia.org/wiki/%E7%BD%97%E4%BC%AF%E7%89%B9%C2%B7
    %E8%83%A1%E5%85%8B
    余韋德 ( 2021年06月16日) 虎克定律 Hooke’s law。科學Online
    https://highscope.ch.ntu.edu.tw/wordpress/?p=46203
    Instron ( 2021年07月29日) 6800 系列萬能測試系統。Instron
    https://www.instron.com/zh-tw/products/testing-systems/universal-testing-
    systems/low-force-universal-testing-systems/-/media/literature-library/products/2020/01/6800-series-universal-testing-systems.pdf?la=zh-
    TW&hash=9E6C794CCBF2E737C5B6E4836B5395F1#page=21

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE