| 研究生: |
黃士展 Huang, Shih-Zhan |
|---|---|
| 論文名稱: |
溫度與應變速率在鈦合金(Ti-6Al-4V)剪切特性上之效應分析 Test Temperature and Strain Rate Effects on the Shear Properties of a Ti-6Al-4V Alloy |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | Ti-6Al-4V合金 、破壞形貌 、霍普金森扭轉試驗機 、絕熱剪切帶 |
| 外文關鍵詞: | shear band, fracture behavior, Ti-6Al-4V alloy, high strain rate, Hopkinson torsional bar |
| 相關次數: | 點閱:90 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是利用一維彈性扭轉波傳理論為基礎的霍普金森扭轉試驗機(Split Hopkinson Torsional Bar),來探討鈦合金(Ti-6Al-4V)在動態剪切荷載下塑變行為。其測試條件為在-100℃、-50℃、25℃及300℃環境溫度下,剪應變速率分別為1800s-1、2300s-1、及2800s-1等三組不同的扭轉荷載速度,以研究其在動態扭轉荷載下的塑變行為與破壞特性分析,並探討不同環境溫度下對材料的相關性,同時引用一構成方程式來描述Ti-6Al-4V在高速剪切荷載下的塑變行為,以作為工程設計與模擬分析時的參考依據。
實驗結果顯示,溫度及應變速率對Ti-6Al-4V之機械性質影響顯著,其塑流應力值在固定應變量下隨著應變速率的提升與在固定應變速率下隨著溫度的下降而增加,並可由Kobayashi & Dodd模式準確地描述Ti-6Al-4V合金的在不同溫度下的高速剪切塑變行為。此外,應變速率的提升與溫度的下降亦導致材料之加工硬化率、應變速率敏感性及昇溫量的上升,但熱活化體積卻會隨著應變速率提升而下降。從掃描式電子顯微鏡的破壞形貌分析中,可發現Ti-6Al-4V的破壞模式均屬於以韌窩為主的延性破壞,其斷面涵括密集韌窩區與平滑區兩特徵區域。此兩特徵區域形貌亦隨著應變速率之變化而異,並且在平滑區可發現局部融熔的瘤狀物形貌。由光學顯微鏡的顯微組織之觀察顯示斷口處有局部大量的剪切塑性變形,並形成一塑性流動的帶狀區域。在溫度25℃與300℃下,係以變形剪切帶形式出現,但在-50℃與-100℃下則是呈現相變態之剪切帶。在剪切帶中微裂縫的的生成與結合導致最後的破壞發生。
The dynamic shear deformation behavior and fracture characteristics of Ti-6Al-4V alloy are studied by torsional split-Hopkinson bar at temperature ranging from -100℃ to 300℃ under three strain rates ( 1800 s-1, 2300 s-1, 2800 s-1). The effects of strain rat and temperature on the mechanical response and microstructure of the alloy are evaluated. At constant temperature, flow stress, work hardening rate coefficient and strain rate sensitivity increase with increasing strain rate, but activation volume decreases. Under constant strain rate, flow stress, work hardening rate coefficient, strain rate sensitivity and temperature sensitivity decrease with increasing temperature, but activation volume increases. Furthermore, the activation energy, DG*, is found to attain a maximum value of 15 KJ/mole for the current tests. We also find dimple characteristics on fracture surfaces and divide the fracture surface appearance into two characteristic zones; the densely dimpled and the smooth surfaced zones. The two characteristic zones have significant difference with increasing strain rate and temperature. Two kinds of shear band, transformed shear band and deformed shear band are found at sub-zero temperature and above room temperature, relatively. This results indicate that microvoid nucleation and growth playing an important role in the shear band deformation. The Kobayashi & Dodd constitutive equation accurately describes the flow behavior of Ti-6Al-4V alloy for the test conditions.
1. R. A. Wood, Titanium Alloy Handbook, Metals and Ceramics Information Center Battelle, Publication No. MCIC-HB-02, December 1972.
2. E. W. Collings and J. C. Ho, Physical Properties of Titanium Alloy, in the Science, Technology and Application of Titanium, in: R. I. Jaffee, N.E. Promisel (Eds.), Proc. First Int. Conf. on Titanium, London, Pergamon Press, Oxford, 1970, P.331.
3. K. Wang,“Use of Titanium for Medical Applications in the USA,” Materials Science & Engineering A, Vol. 213A, pp. 134-137, 1996.
4. K. Faller, F. H. Froes,“The Use of Titanium in Family Automobiles: Current Trends,”Journal of the Minerals, Metals & Materials Society, Vol. 53, No. 4, pp. 27-28, 2001.
5. I. Gurrappa,“Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications,”Materials Characterization, Vol. 51, pp. 131-139, 2003.
6. ASM International, Heat Treatment of Titanium and Titanium Alloys, Metal Handbook, 8th Ed, Vol. 2, ASM, 1964, pp. 301-306.
7. E. W. Callings, The Physical Metallurgy of Titanium Alloys, Metals Park, OH: ASM, 1984.
8. ASM International, Forming and Forging, Metals Handbook, Vol. 14, Metals Park, OH: ASM, 1989, pp. 838-848.
9. ASM International, Phase Diagrams of Binary Titanium Alloys, Metals Park, OH: ASM, 1987.
10. C. C. Chen and J. E. Coyne,“Deformation Characteristics of Ti-6Al-4V Alloy under Isothermal Forging Conditions,”Metallurgical Transactions A, Vol. 7A, pp. 1931-1941, 1976.
11. P. S. Follansbee and G. T. III Gray,“Analysis of the Low Temperature, Low and High Strain-rate Deformation of Ti-6Al-4V,”Metallurgical Transactions A, Vol. 20A, pp. 863-874, 1989.
12. S. V. Kailas, Y. V. R. K. Prasad and S. K. Biswas,“Flow Instabilities and Fracture in Ti-6Al-4V Deformed in Compression at 298 K to 673 K,”Metallurgical and Materials Transactions A, Vol. 25A, pp. 2173-2179, 1994.
13. K. Kawata and J. Shioiri, High Velocity Deformation of Solids, Springer-Verlag, Berlin/Heeidelberg, New York, pp.98-107, 1978.
14. G. L. Wulf,“High Strain Rate Comperssion of Titanium and Some Titanium Alloys,”International Journal of Mechanical Sciences, Vol.21, pp.713-718, 1979.
15. Y. Bai and B. Dood, Adiabatic Shear Localization, Pergamon Press, pp.80-91, 1992.
16. Y. Bai, Q. Xue, Y. Xu and L. Shen,“Characteristics and Microstructure in the Evolution of Shear Localization in Ti-6Al-4V Alloy,”Mechanics of Materials, Vol. 17, pp. 155-164, 1994.
17. S. C. Liao and J. Duffy,“Adiabatic Shear Bands in a TI-6Al-4V Titanium alloy,”Journal of the Mechanics and Physics of Solids, Vol. 46, pp. 2201-2231, 1998.
18. ASM International, Titanium A Technical Guide, Materials Park, OH: ASM International, p.4, 1994.
19. 賴耿陽, 金屬鈦理論與應用, 復漢出版社, pp.31-41, 1980.
20. ASM International, Titanium Alloys, Materials Properties Handbook, Materials Park, OH: ASM International, p.489, 1994.
21. ASM International, Titanium Alloys, Materials Properties Handbook, Materials Park, OH: ASM International, pp483-635, 1994.
22. H. S. Yang, G. Gurewita, and A. K. Mukherjee,“Mechanical Behavior and Microstructural Evolution During Superplastic Deformation of Ti-6Al-4V,”Materials Transactions, Vol. 32, No. 5, pp.465-472, 1991.
23. M. E. Meyer,“Strength and Ductility of a Titanium Alloy Ti-6Al-4V in Tension and Compressive Loading Under Low, Medium and High Rates of Strain,”Deutsche Gessellschaft fur Metallkunde, Ed. Lutiering, G., Zwicker, U. & W., pp. 1851-1858, 1984.
24. K. Kawata and J. Shioiri, High Velocity Deformation of Solids, Springer-Verlag, Berlin/Heeidelberg, New York, pp. 98-107, 1978.
25. R. D. Curran, L. Seaman and D. A. Shockey,“Linking Dynamic Fracture to Microstructural Processes,”Shock Waves and High-Strain-Rate Phenomena in Metals: Concepts and Applications, pp. 22-26, 1980.
26. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
27. U. S. Lindholm and L. W. Yeakly,“High Strain Rate Tension and Compression,”Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
28. M. A. Meyers,“Elastic Waves,”Dynamics Behavior of Materials, pp. 23-65, 1994.
29. 李偉賢, 劉鎮洋, 王柏凱,“離散傅立葉轉換對霍普金森桿實驗波散效應之修正,”第二十七屆中華民國全國力學學會暨全國力學會議論文集, 台南, 2003.
30. J. D. Campbell,“Dynamic Plasticity Macroscopic and Microscopic Aspects,”Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
31. D. Klahn, A. K. Mukherjee and J. E. Dorn,“Proceedings of the 2nd International Conference on the Strength of Metals and Alloys,”Vol. III, ASM, pp. 951, 1970.
32. J. D. Campbell and W. G. Ferguson,“Temperature and Strain-rate Dependence of the Shear Strength of Mild Steel,”Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
33. A. M. Eleiche and J. D. Campbell,“Strain-rate Effects During Reverse Torsional Shear,”Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
34. J. Harding and J. Huddart,“The Use of the Double-notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain,”Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
35. A. Seeger,“Dislocation and Mechanical Properties of Crystals,” The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
36. U. S. Lindholm and L. M. Yeakly,“Dynamic Deformation of Single and Polycrystalline Aluminum,”Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
37. H. Conrad and H. Wiedersich,“Activation Energy for Deformation of Metals at Low Temperatures,”Acta Metallurgica, Vol. 8, pp.128-130, 1960.
38. W. G. Ferguson, A. Kumar and J. E. Dorn,“Dislocation Damping in Aluminum at High Strain Rates,”Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
39. U. S. Lindholm and L. M. Yeakly,“Dynamic Deformation of Single and Polycrystalline Aluminum,”Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
40. J. D. Campbell and A. R. Dowling,“Behavior of Materials Subjected to Dynamic Incremental Shear Loading,”Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
41. J. Harding,“The Effect of High Strain Rate on Material Properties,”Materials at High Strain Rates, pp. 133-186, 1987.
42. Y. Bai and B. Dood, Adiabatic Shear Localization, Pergamon Press, pp.1-3, 1992.
43. M. E. Backman, S. A. Schulz, J. C. Schulz and J. K. Pringle, “Scaleing Rules for Adiabatic Shear,”in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L. E. Murr, K. P. Staudhammer and M. A. Meyers), pp. 675-688, Marcel Dekker Inc., New York, 1986.
44. M. A. Meyers, Dynamic Behavior of Materials, J. Wiley, pp.448-486, 1994.
45. R. J. Clifton,“Material Response to Ultra High Loading Rates,”NRC Report No. 356, Washington (DC): US National Material Advisory Board, Chapter 8, 1980.
46. Y. Bai, Shock Waves and High-strain-rate Phenomena in Metals (eds. Meyers M. A. and Murr L. E.) p. 277, Plenum Press, New York, 1981.
47. A. Molinari and R. J. Clifton,“Analytical Characterization of Shear Localization in Thermoviscoplastic Materials,”Journal of Applied Mechanics, Transactions ASME, Vol. 54, pp.806-812, 1987.
48. T. W. Wright,“Shear Band Susceptibility: Work Hardening Materials,”International Journal of Plasticity, Vol. 8, pp. 583-602, 1992.
49. T. W. Wright and J. W. Walter,“On Stress Collapse in Adiabatic Shear Bands,”Journal of the Mechanics and Physics of Solids, Vol. 35, pp. 701-720, 1987.
50. Q. Xue, M.A. Meyers and V. F. Nesterenko,“Self-organization of Shear Bands in Titanium and Ti-6Al-4V Alloy,”Acta Materialia, Vol. 50, pp. 575-596, 2002.
51. Y. Me-Bar and D. Shechtman,“On the Adiabatic Shear of Ti-6Al-4V Ballistic Targets,”Materials Science and Engineering, Vol. 58, pp. 181-188, 1983.
52. H. E. Grebe, H. R. Pak and M. A. Meyers,“Adiabatic Shear Localization in Titanium and Ti-6Al-4V Alloy,”Metallurgical Transactions A, Vol. 16, pp. 761-775, 1985.
53. M. A. Meyers and H. R. Pak,“Observation of an Adiabatic Shear Band in Titanium by High-voltage Transmission Electron Microscopy,”Acta Metallurgica, Vol. 34, pp. 2493-2499, 1986.
54. M. A. Meyers, G. Subhash, B. K. Kad and L. Prasad,“Evolution of Microstructure and Shear-band Formation in a Hcp Titanium,” Mechanics of Materials, Vol.17, pp. 175-193, 1994.
55. S. P. Timothy and I. M. Hutchings,“Structure of Adiabatic Shear Bands in a Titanium Alloy,”Acta Metallurgica, Vol. 33, pp. 667-676, 1985.
56. S. P. Timothy,“Structure of Adiabatic Shear Bands in Metals: A Critical Review,”Acta Metallurgica, Vol. 35, pp. 301-306, 1987.
57. M. G. da Silva and K. T. Ramesh,“Rate-dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V,”Materials Science & Engineering A, Vol. 232A, pp. 11-22, 1997.
58. D. R. Chichili, K. T. Ramesh and K. J. Hemker,“High-strain-rate Response of Alpha-titanium: Experiments, Deformation Mechanisms and Modeling,”Acta Materialia, Vol. 46, pp. 1025-1043, 1998.
59. Y. Bai and B. Dood, Adiabatic Shear Localization, Pergamon Press, pp.102, 1992.
60. Y. Bai and B. Dood, Adiabatic Shear Localization, Pergamon Press, pp.108, 1992.
61. V. V. Sokolovsky, Priskl. Mat Mekh., Vol. 12, pp. 261-281, 1948.
62. T. Vinh, M. Afzali and A. Roche,“Fast Fracture of Some Usual Metals at Combined High Strain and High Strain Rate,”Mechanical Behavior of Materials, Vol. 2, pp. 633-642, 1979.
63. J. Duffy, Proc.“Workshop on Shear Localization,”Brown Univ. Report MRL-E-127, pp. 19-29, 1981.
64. H. Kobayashi and B. Dodd,“A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,”International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
65. H. Kobayashi and B. Dodd,“Formation of Adiabatic Shear Bands in Steel and Titanium Twisted at Dynamic Rates,”Journal of Japan Society Technology of Plastic, Vol. 29, pp. 1152-1158, 1988.
66. F. J. Zerilli and R. W. Armstrong,“Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,”Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
67. R. W. Klopp, R. J. Clifton and T. G. Shawki,“Pressure Shear Impact and Dynamic Viscoplastic Response of Metals,”Mechanics of Materials, Vol. 4, pp. 375-385, 1985.
68. W. Roberts,“Dynamic Changes That Occur During Hot Working and Their Significance Regarding Microstructural Development and Hot Workability, Deformation, Processing and Structure,” American Society for Metals, Metals Park, Ohio, pp. 109-184, 1984.
69. L. Shi and D. O. Northwood,“The Mechanical Behavior of an AISI Type 310 Stainless Steel,”Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
70. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier and Y. V. R. K. Prasad,“Microstructural Mechanisms During Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure,”Materials Science and Engineering A, Vol. 325, pp. 112-125, 2002.
71. K. Farmanesh and A. Najafi-Zadeh,“Thermomechanical Behavior of Ti-6Al-4V Alloy,”Journal of Materials Science and Technology, Vol. 19, pp. 217-220, 2003.
72. L. X. Li, K. P. Rao, Y. Lou and D. S. Peng,“Hot Deformation Characteristics of Ti-6Al-4V,”Zeitschrift fuer Metallkunde/ Materials Research and Advanced Techniques, Vol. 94, pp. 1006-1011, 2003.
73. ASM International, Titanium Alloys, Materials Properties Handbook, Materials Park, OH: ASM International, p.494, 1994.
74. J. H. Giovanola,“Adiabatic Shear Banding under Pure Shear Loading Part II: Fractographic and Metallographic Observations,” Mechanics of Materials, Vol. 7, pp.73-87, 1988.
75. M. E. Backman, E. Marvin, Finnegan and A. Stephen,“Propagation of Adiabatic Shear,”American Society for Testing and Materials, Book of ASTM Standards, pp. 531-543, 1973.
76. M. A. Greenfield and H. Margolin,“Mechanism of Void Formation, Void Growth, and Tensile Fracture in an Alloy Consisting of Two Ductile Phases,”Metallurgical Transactions, Vol. 3, pp. 2649-2659, 1972.
77. C. A. Stubbington and A. W. Bowen,“Improvements in the Fatigue Strength of Ti-6Al-4V through Microstructure Control,”Journal of Materials Science, Vol. 9, pp. 941-947, 1974.
78. Y. H. Pao and A. Gilat,“High Strain Rate Deformation and Failure of A533B Steel at Various Temperatures,”Acta Metallurgica et Materialia, Vol. 40, pp. 1271-1280, 1992.