| 研究生: |
黃煜甫 Huang, Yu-Fu |
|---|---|
| 論文名稱: |
以射頻磁控濺鍍系統製備摻雜不同價態鐵的氧化鋅薄膜之基礎特性與電性研究 Study on characterization and electrical properties of Fe-doped ZnO thin films by R.F. magnetron sputtering deposition |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 氧化鋅薄膜 、摻鐵之氧化鋅薄膜 、透明導電膜 、射頻磁控濺鍍 |
| 外文關鍵詞: | Fe-doped ZnO film, transparent conductive oxide, R.F. sputtering deposition |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用射頻磁控濺鍍系統在玻璃基板與導電矽基板上沉積不同參數的摻鐵之氧化鋅(FZO)薄膜,並與沒有摻雜物的氧化鋅(ZnO)薄膜進行比較,而後再進行後退火前後FZO基礎特性比較,並評估電性是否有改善與提升。由X光繞射分析儀可知,製備出來摻雜鐵的氧化鋅薄膜晶體結構為六方纖鋅礦結構,與氧化鋅薄膜相較並無改變;從原子力顯微鏡與掃描是電子顯微鏡觀察中可得知,較高的能量(高基板溫度與高製程功率)製備下,FZO薄膜具有較高的晶粒與較大的表面粗糙度;由紫外光-可見光光譜儀量測結果中觀察到,FZO其可見光穿透度平均仍在80 %以上,符合透明導電薄膜可見光高穿透性;此外,在前人文獻中FZO能隙小於ZnO ,而本實驗中FZO薄膜在相同參數下其能隙(band gap)會與ZnO薄膜差異不大,推估與晶粒大小有關,由於FZO粒徑遠小於ZnO,較小的晶粒會提高其能隙,因而使FZO能隙與ZnO差異不大;而在X光能譜儀量測中可得知,退火後會使薄膜中的Fe2+會氧化成Fe3+,使得薄膜中Fe3+比例上升;最後在電流-電壓曲線(I-V curve)量測與導電力原子顯微鏡結果中,可得知退火後FZO導電性確實有提高,推測原因為晶粒變大使晶界變少,使得載子遷移率上升;或為Fe3+比例增加,使載子濃度上升進而改善導電率,但電阻下降幅度不大,推測原因為FZO薄膜中有生成微量的氧化鐵(Hematite),氧化鐵為非電的良導體,因而使我的電性無顯著地改善。
ZnO is a promising material of transparent conductive oxides (TCOs), and ZnO has been reported as doping common impurities (Al, Ga, B, etc.) to change its chemical and physical properties. In this study, the Fe-doped ZnO (FZO) thin films were fabricated by R.F. sputtering deposition. In order to investigate the effect of the ratio of Fe3+/ (Fe2++Fe3+) on the properties of FZO thin films, the FZO films were annealed at 550 ℃ for 1 h under the O2 environment. The structural, morphological, optical, and electrical properties of these films were examined before and after annealing via X-ray diffractometer (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, and 4156C semiconductor parameter analyzer respectively. The XRD patterns showed FZO films with a (002) preferred orientation both before and after the posting annealing treatment. The roughness of FZO films increased after the posting annealing. In addition, the average transmittance of the FZO thin films within the visible-light range (380~780 nm) was about 80 % both before and after annealing. The band gap of the FZO thin films were from 3.25 to 3.3 eV. It is not much different from that of ZnO under the same parameters. It is related to the grain size, because the FZO grain is much smaller than ZnO makes its energy gap rise, so it is as close as ZnO. Moreover, XPS results showed that the ratio of Fe3+/ (Fe2++Fe3+) would enhance after the posting annealing. The I-V curve results and the pattern of CAFM revealed that the electrical resistivity would decrease with the increasing of the ratio of Fe3+/ (Fe2++Fe3+), which is owing to Fe3+ provided one more electron than Fe2+ and thus improved the carrier concentration of the FZO films. The other reason was the increasing grain size of the FZO films, which would reduce the grain boundary and increase the electron transport efficiency. However, the magnitude of the decrease in resistance is not large due to a small amount of iron oxide formed in the FZO thin films, so that the electrical property is not significantly improved in my research.
[1] 陳仲宜,前瞻奈米鍍膜技術與潛力市場探索,金屬工業研究發展中心,(2004)
[2] 呂建國,ZnO薄膜應用的最新研究進展,功能材料與器材學報,(2002)
[3] Je-Hsiung Lan and Jerzy Kanicki, “An Alternative Transparent Conducting Oxide to ITO for the a-Si:H TFT-LCD Applications”, Active Martrix Liquid Crystal Displays, 95 (1995) p.54-57.
[4] Joachim Muller, Bernd Rech, Jiri Springer and Milan Vanecek, “TCO and light trapping in silicon thin film solar cells”, Solar Energy, 77 (2004) p.917-930.
[5] Celine Mayousse, Caroline Celle, Eleonore Moreau, Jean-Francois Maingue, Alexandre Carella and Jean-Pierre Simonato, “Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors”, Nanotechnology, 24 (2013) 215501.
[6] K. Badeker, Ann. Physics, Leipzip, 22 (1907) p.749.
[7] Brian G. Lewis and David C. Paine, “Applications and Processing of Transparent Conducting Oxides”, MRS Bulletin, 25 (2000) p.22-27.
[8] 范志新,AZO透明導電薄膜的特性與應用,光電子技術,(2000)
[9] 段學臣、楊向萍,新材料ITO薄膜的應用和發展,稀有金屬與硬質合金,(1999)
[10] Takahashi Kiyoshi, Yoshikawa Akihiko, Sandhu Adarsh, “Wide bandgap semiconductors: fundamental properties and modern photonic and electronic devices”, 357 (2007).
[11] Rossler U., Landolt-Bornstein, “New Series, Group III”, (1999) 17B, 22 and 41B.
[12] V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide”, Journal of Applied Physics 83 (1998) p.5447-5451.
[13] Rossler, U., “Energy Bands of Hexagonal 2-6-Semiconductors”, Physical Review 184 (1969) p.733.
[14] Yang, C.K. and K.S. Dy, “Band-Structure of ZnO Using the LMTO Method”, Solid State Communications, (1993) 88(6): p.491-494.
[15] Morkoc, H., et al., “Large-Band-Gap SiC, III-V Nitride, and II-VI ZnSe-Based Semiconductor-Device Technologies”, Journal of Applied Physics 76 (1994) p.1363-1398.
[16] Y. F. Chen, Z. Zhu, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, Journal of Applied Physics 84 (1998) p.3912-3918.
[17] B.H. Choi, H. B. Im and J. S. Song, “Optical and Electrical-Properties of Ga2O3-Doped ZnO Films Prepared by R.F. Sputtering”, Thin Solid Films 193 (1990) p.712-720.
[18] Zhang, D.H. and D.E. Brodie, “Effects of Annealing ZnO Films Prepared by Ion-Beam-Assisted Reactive Deposition”, Thin Solid Films 238 (1994) p.95-100.
[19] Zhang, D.H. and D.E. Brodie, “Crystallite Orientation and the Related Photo-response of Hexagonal ZnO Films Deposited by R.F. Sputtering”, Thin Solid Films 251 (1994) p.151-156.
[20] Park, K.C., D.Y. Ma, and K.H. Kim, “The physical properties of Al-doped Zinc Oxide Films prepared by RF magnetron sputtering”, Thin Solid Films, 305 (1997) p.201-209.
[21] Swalin, R.A., “Thermodynamics of Solids”, (1972): Wiley
[22] Silva, R.F. and M.E.D. Zaniquelli, “Aluminium-doped zinc oxide films prepared by an inorganic sol-gel route”, Thin Solid Films, 449 (2004) p.86-93.
[23] Altamirano-Juarez, D.C., et al., “Low-resistivity ZnO:F:Al transparent thin films”, Solar Energy Materials and Solar Cells 82 (2004) p.35-43.
[24] R. Kohlhaas, P. Donner, N. Schmitz-Pranghe, Z. Angew, “The temperature dependence of the lattice parameters of iron, cobalt, and nickel in the high-temperature range” Physic 23 (1967).
[25] Cutnell John and Johnson Kenneth, “Physics Fourth Edition”, 591 (1998).
[26] H. R. Shanks, A. H. Klein, and G. C. Danielson, “Thermal Properties of Armco Iron”, Journal of Applied Physics 38 (2004) p.2885-2892.
[27] B. Chapaman, “Glow Discharge Process-Sputtering and Plasma Etching”, John Wiley & Sons, (1980).
[28] 羅吉宗,薄膜科技與應用,全華圖書,(2009)
[29] J. R. Roth, “Industrial Plasma Engineering-Volume1: Principles”, Institute of Physics, (1995)
[30] S.M. Rossnagel, J.J. Cuomo and W.D. Westwood, “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A. (1982).
[31] 陳家富,真空鍍膜基礎(二),中華民國鍍膜科技研討會暨國科會計畫研究成果發表會講義,(2000)
[32] 田民波,“薄膜技術與薄膜材料”,五南圖書出版公司,(2007)
[33] 莊達人,“VLSI製造技術”,高立出版,(1995)
[34] J. Colin, “Size selection of strained islands during stranski-krastanov growth”, Solid Films 536 (2012) p.187-190.
[35] Hosang Ahn, Joo Hyon Noh, Seon-Bae Kim, Ruel A. Overfelt, Young Soo Yoon and Dong-Joo Kim, “Effect of annealing and argon-to-oxygen ratio on sputtered SnO2 thin film sensor for ethylene gas detection”, Materials Chemistry and Physics 124 (2010) p.563-568.
[36] Yue-Song He, Joe C. Campbell, Robert C. Murphy, M.F. Arendt and John S. Swinnea, “Electrical and optical characterization of Sb : SnO2”, Journal of Materials Research 8 (1993) 3131-3134.
[37] Zhuo Chen, Kai Shum, T. Salagaj, Wei Zhang and K. Strobl, “ZnO thin films synthesized by chemical vapor deposition”, IEEE Long Island Systems, Applications and Technology Conference, (2010)
[38] 楊明輝,“透明導電膜”,藝軒圖書出版,(2006)
[39] 楊明輝,“金屬氧化物透明導電材料的基本原理”,工業材料雜誌,第179期,民90.11,頁136-137.
[40] I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows”, Journal of Applied Physics 60 (1986) p.123-159.
[41] K. L. Chopra, S. Major and D. K. Pandya, “Transparent conductors-A status review”, Thin Solid Films, 102 (1983) p.1-46.
[42] E. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors”, Physics Review, 77 (1950) p.388-390.
[43] R. A. Swalin, “Thermodynamics of Solids”, Wiley (1972)
[44] J. E. Morris, M. I. Ridge, C. A. Bishop and R. P. Howson, “Temperature dependence of Hall mobility in indium-tin oxide thin films”, Journal of Applied Physics, 51 (1980) p.1847-1849.
[45] J. Montero, C. Guillen and J. Herrero, “Discharge power dependence of structural, optical and electrical properties of DC sputtered antimony doped tin oxide (ATO) films”, Solar Energy Materials & Solar Cells 95 (2011) p.2113-2119.
[46] 林麗娟,X光繞射原理及其應用,工業材料第86期,民82.02,頁100-109.
[47] 羅聖全,探索奈米視界,科學研習,第52期,2013年5月,頁4-6.
[48] 黃英碩,掃描探針顯微術的原理與應用,科儀新知第二十六卷第四期,民94.02,頁7-17.
[49] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Materials Research Bulletin 3 (1968) p.37-46.
[50] Hoon, J.W., K.Y.Chan, and T.Y. Tou, Zinc oxide films deposited by radio frequency plasma magnetron sputtering technique, Ceramics International, 39 (2013) p.269-272.
[51] Fu, C.F., et al., Surface of the Cr doping on structure and optical properties of ZnO thin films, Optoelectronics Letters 6 (2010) p.37-40.
[52] X.L. Zhang, R. Qiao, J.C. Kim, Y.S. Kang, Crystal Growth 8 (2008) p.2609-2613.
[53] Huawa Yu, Jing Wang, Yangan Yan, Xin Wang, Bin Gao, Hanchen Liu, Yali Du, “ZnO thin films produced by the RF magnetron sputtering,” International Conference on Electronic & Mechanical Engineering and Information Technology, IEEE, (2011) p.2486-2489.
[54] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, Thin Solid Films 427 (2003) p.401–405.
[55] R. Navamathavam, C.K. Choi, S.J. Park, J. Alloys Compd. 475 (2009) p.889–892.
[56] Georgi P.Daniel, V.B.Justinvictor, PrabithaB.Nair, K. Joy, PeterKoshy, and P.V.Thomas, “Effect of annealing temperature on the structural and optical properties of ZnO thin films prepared by RF magnetron sputtering”, Physica B 405 (2010) p.1782–1786.
[57] L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, C.Y. Kong, “Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films”, Journal of Alloys and Compounds 484 (2009) p.575–579.
[58] L.V. Gritsenko, Kh. A. Abdullin, M. T. Gabdullin, Zh. K. Kalkozova, S. E. Kumekov, Zh. O. Mukash, A.Yu. Sazonov and E.I.Terukov, “Effect of thermal annealing on properties of polycrystalline ZnO thin films”, Journal of Crystal Growth 457 (2017) p.164–170.
[59] A.J. Chen, X.M. Wu, Z.D. Sha, L.J. Zhuge, Y.D. Meng, “Structure and photoluminescence properties of Fe-doped ZnO thin films”, J. Phys. D: Applied Physics, 39 (2006) p.4762-4765.
[60] Maissel, L. I., Schaible, P. M., “Thin Films Deposited by Bias Sputtering”, Journal of Applied Physics (1965) p.237-242.
[61] S. N. Ermolov, V. A. Marchenko, V. Zh. Rosenflantz and A. G. Znamenski, “Resputtering effects during magnetron sputtering of Y-Ba-Cu-O”, Thin Solid Films 204 (1991) p.229-237.
[62] Hiroyoshi Enami, Toshiyuki Shinohara, Nobuaki Kawahara, Sanemasa Kawabata, Hiroki Hoshizaki and Toru Imura, “Resputter effect on Y1Ba2Cu3O7-d Thin Films Prepared by RF-Magnetron Sputtering”, Japanese Journal Of Applied Physics 29 (1990) p.782-784..
[63] Chang, Y.S. and J.M. Ting, “Growth of ZnO thin films and whiskers”, Thin Solid Films, 398 (2001) p.29-34.
[64] Hsu, C.W., et al., “Effect of oxygen addition on physical properties of ZnO thin film grown by radio frequency reactive magnetron sputtering”, Journal of Alloys and Compounds, 509 (2011) p.1774-1776.
[65] Chang, R.C., et al., “An investigation of preferred orientation of doped ZnO films on the 36 degrees YX-LiTaO3 substrates and fabrications of love-mode devices”, Surface & Coatings Technology, 200 (2006) p.3235-3240.
[66] Tang, I.T., et al., “Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions”, Journal of Crystal Growth, 252 (2003) p.190-198.
[67] Arun Kumar, Pooja Dhiman, M. Singh, “Effect of Fe-doping on the structural, optical and magnetic properties of ZnO thin films prepared by RF magnetron sputtering”, Ceramics International 42 (2016) 7918–7923.
[68] Qingqing Fang, Hui Cheng, Kai Huang, Jinzhi Wang, Rui Li and Yongfang Jiao, “Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles”, Journal of Magnetism and Magnetic Materials 294 (2005) p.281–286.
[69] Gang Yang, Huan Ni, Haidong Liu, Po Gao, Hongmei Ji, Soumyajit Roy, João Pinto and Xuefan Jiang, “The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Gd)”, Journal of Power Sources 196 (2011) p.4747–4755.
[70] S. Bagalagel and J. Shirokoff, “Effect of annealing on preferred orientations in the Cu/SiO2 and Cu/SiO2/Si(1 0 0) interfaces”, Materials Science and Engineering A 479 (2008) p.112–116.
[71] Deuk-Kyu Hwang, Kyu-Hyun Bang, Min-Chang Jeong and Jae-Min Myoung, “Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction”, Journal of Crystal Growth 254 (2003) p.449–455.
[72] Chuen-Lin Tien, Kuo-Chang Yu, Tsung-Yo Tsai and Ming-Chung Liu, “Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films”, Applied Surface Science 354 (2015) p.79–84.
[73] Jaehyeong Lee, “Effects of oxygen concentration on the properties of sputtered SnO2:Sb films deposited at low temperature”, Thin Solid Films, 516 (2008) p.1386-1390.
[74] Koichi Suzuki and Mamoru Mizuhashi, “Structural, electrical and optical properties of R.F. magnetron-sputtered SnO2:Sb film”, Thin Solid Films, 97 (1982) p.119-127.
[75] Dagang Miao, ShouxiangJiang, SongminShang and Zhuoming Chen, “Effect of heat treatment on infrared reflection property of Al-doped ZnO films”, Solar Energy Materials & Solar Cells 127 (2014) p.163–168.
[76] Kartik H. Patel and Sushant K. Rawal, “Influence of power and temperature on properties of sputtered AZO films”, Thin Solid Films 620 (2016) p.182–187.
[77] Chuen-Lin Tien, Kuo-Chang Yu, Tsung-Yo Tsai and Ming-Chung Liu, “Effect of RF power on the optical, electrical, mechanical and structural properties of sputtering Ga-doped ZnO thin films”, Applied Surface Science 354 (2015) p.79–84.
[78] Wang, P. H., et al., “Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers”, Applied Surface Science 258 (2012) p.9510-9517.
[79] Peihong Wang, Hejun Du, Shengnan Shen, Mingsheng Zhang and Bo Liu, “Preparation and characterization of ZnO microcantilever for nanoactuation”, Nanoscale Research Letters (2012), 7:176
[80] Changzheng Wang, Zhong Chen, Ying He, Lanying Li and Dong Zhang, “Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system”, Applied Surface Science 255 (2009) p.6881–6887.
[81] M. Silambarasan, S. Saravanan and T. Soga, “Effect of Fe-doping on the structural, morphological and optical Properties of ZnO nanoparticles synthesized by solution combustion process”, Physica E 71 (2015) p.109–116.
[82] G. Haacke, “New figure of merit for transparent conductors”, Journal of Physics 47 (1976) p.4086-4089.
[83] Sukanta De, Thomas M. Higgins, Philip E. Lyons, Evelyn M. Doherty, Peter N. Nirmalraj, Werner J. Blau, John J. Boland, and Jonathan N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios”, American Chemical Society 3 (2009) p.1767–1774.
[84] R. Dholam, N. Patel, M.Adami, A. Miotello, “Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst”, international journal of hydrogen energy 34 (2009) p.5337–5346.
[85] S. Karamat, R.S.Rawat, P. Lee, T. L. Tan and R. V. Ramanujan, “Structural, elemental,optical and magnetic study of Fe doped ZnO and impurity phase formation”, Progress in Natural Science: Materials International 24 (2014) p.142–149.
[86] V. Srikant, “On the optical band gap of zinc oxide”, Journal of Applied Physics 83 (1998) p.5447-5451.
[87] V. Srikant and D. R. Clarke, “On the optical band gap of zinc oxide”, Journal of Applied Physics 83 (1998) p.5447-5451.
[88] Dinghua Bao, Xi Yao, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, “Band-gap energies of sol-gel-derived SrTiO3 thin films”, Applied Physics Letters, 79 (2001) p.3767.
[89] Eric L. Miller, Daniela Paluselli, Bjorn Marsen and Richard E. Rocheleau, “Low-temperature reactively sputtered iron oxide for thin film devices”, Thin Solid Films 466 (2004) p.307-313.
[90] H. Sakai, H. Kawahara, M. Shimazaki, M. Abe, “Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles: effect of alcohol addition”, Langmuir 14 (1998) p.2208-2212.
[91] Xueqiang Liu, Weihong Bi and Zhaolun Liu, “Influence of post-annealing on the properties of Sc-doped ZnO transparent conductive films deposited by radio-frequency sputtering”, Applied Surface Science 255 (2009) p.7942–7945.
[92] Dagang Miao,Shouxiang Jiang, Songmin Shang and Zhuoming Chen, “Effect of heat treatment on infrared reflection property of Al-doped ZnO films”, Solar Energy Materials & Solar Cells 127 (2014) p.163–168.
[93] Liang Wang, James S. Swensen, Evgueni Polikarpov, Dean W. Matson, Charles C. Bonham, Wendy Bennett, Daniel J. Gaspar and Asanga B. Padmaperuma, “Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates”, Organic Electronics, 11 (2010) p.1555-1560.
[94] M.Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts and J. A. Mydosh, “Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganties”, Science, 285 (1999) p.1540.
[95] John F. Mulder, William F. Stickle, Peter E.'Sobol and Kenneth D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, USA (1992)
[96] Jing, L. Q. et al., “The surface properties and photocatalytic activities of ZnO ultrafine particles”, Applied Surface Science 180 (2001) p.308-314.
[97] Yoon, K. H., J. W. Choi and D. H. Lee, “Characteristics of ZnO thin films deposited onto Al/Si substrates by rf magnetron sputtering”, Thin Solid Films 302 (1997) p.116-121.
[98] Erhart, P., K. Albe and A. Klein, “First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects”, Physical Review B 73 (2006) p.205203(1)-205203(9)
[99] Chang, J. F., W. C. Lin and M. H. Hon, “Effects of post-annealing on the structure and properties of Al-doped zinc oxide films”, Applied Surface Science (2001) 183 p.18-25.
[100] Yen, W. T., et al., “Effect of post-annealing on the optoelectronic properties of ZnO:Ga films prepared by pulsed direct current magnetron sputtering”, Thin Solid Films 518 (2010) p.3882-3885.
[101] Islam, M. N., et al., “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films”, Thin Solid Films 280 (1996) p.20-25.
[102] L. N. Li, Y. Zhao, X. L. Chen, J. Sun and X. D. Zhang, “Effects of oxygen flux on the aluminum doped zinc oxide thin films by direct current magnetron sputtering”, Physics Procedia 32 ( 2012 ) p.687 – 695.
[103] John C. C. Fan and John B. Goodenough, “X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films”, Journal of Applied Physics 48 (1977) p.3524-3531.
[104] A.P. Rambu, V. Nica and M. Dobromir, “Influence of Fe-doping on the optical and electrical properties of ZnO films”, Superlattices and Microstructures 59 (2013) p.87–96.
[105] Tingzhi Liu, Xiaoyan Fei, Liang Hu, Hao Zhang, Yangyang Li and Shuwang Duo, “Effect of substrate surface pretreatment and annealing treatment on morphology, structure, optical and electrical properties of sputtered ZnO films”, Superlattices and Microstructures 83 (2015) p.604–617.
[106] A. Zaier, A. Meftah, A. Y. Jaber, A. A. Abdelaziz and M.S. Aida, “Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique”, Journal of King Saud University – Science (2015) 27 p.356–360.
[107] U. Chaitra, Dhananjaya Kekuda and K. Mohan Rao, “Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films”, Ceramics International 43 (2017) p.7115–7122.
[108] Jamilah Husna, M. Mannir Aliyu, M. Aminul Islam, P. Chelvanathan, N. Radhwa Hamzah, M. Sharafat Hossain, M.R. Karim and Nowshad Amin, “Influence of Annealing Temperature on the Properties of ZnO Thin Films Grown by Sputtering”, Energy Procedia 25 ( 2012 ) p.55-61.
[109] Davood Raoufi and Taha Raoufi, “The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films”, Applied Surface Science 255 (2009) p.5812-5817.
[110] L. Yang, B. Duponchel, R. Cousin, C. Gennequin, G. Leroy, J. Gest and J.-C. Carru, “Structure, morphology and electrical characterizations of direct current sputtered ZnO thin films”, Thin Solid Films 520 (2012) p.4712–4716.
[111] X.Q. Gu, L.P.Zhu, L.Cao, Z.Z.Ye, H.P.He and PaulK.Chu, “Optical and electrical properties of ZnO:Al thin films synthesized by low-pressure pulsed laser deposition”, Materials Science in Semiconductor Processing, 14 (2011) p.48–51.
[112] A. R. Babar, S. S. Shinde, A. V. Moholkar and K. Y. Rajpure, “Electrical and dieledtric properties of co-precipitated nanocrystalline tin oxide”, Journal of Alloys and Compounds, 505 (2010) p.743-749.
[113] M L Dinesha, G D Prasanna, C S Naveen and H S Jayanna, “Structural and dielectric properties of Fe doped ZnO nanoparticles”, Indian J Physics (2012).
[114] C. Baban et al., “Preparation and characterization of Mn-doped ZnO thin films”, Journal of Optoelectronics and Advanced Materials (2010).
[115] Bekir Yurduguzel et al., “Ni doping effect on electrical conductivity of ZnO nanocrystalline thin films”, Journal of Materials Science Materials in Electronics (2011).
[116] Makoto Arita, Mayu Yamaguchi and Masataka Masuda, “Electrical and Optical Properties of Germanium-Doped Zinc Oxide Thin Films”, Materials Transactions, 45 (2004) p.3180-3183.
[117] F. K. Shan , G. X. Liu , W. J. Lee , B. C. Shin and K. H. Kim, “STRUCTURAL, ELECTRICAL, AND OPTICAL PROPERTIES OF GERMANIUM-DOPED ZnO THIN FILMS DEPOSITED BY PULSED LASER DEPOSITION TECHNIQUE”, Integrated Ferroelectrics, 98 (2008) p.199–207.
[118] F.Z. Bedia, A. Bedia, M. Aillerie, N.Maloufi and B. Benyoucef, “Structural, optical and electrical properties of Sn-doped zinc oxide transparent films interesting for organic solar cells(OSCs)”, Energy Procedia 74 (2015) p.539-546.
校內:2024-08-03公開