| 研究生: |
董上銘 Tong, Sun-Ming |
|---|---|
| 論文名稱: |
以甲苯半連續馴養現地微生物共代謝三氯乙烯之研究 |
| 指導教授: |
郭明錦
Kuo, Tom |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 共代謝 、甲苯 、三氯乙烯 |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要在實驗室半連續泥漿環境中,了解現地族群菌種微生物是否能被馴養以甲苯為基質共代謝生物降解三氯乙烯(TCE);另觀察在同樣條件下植入甲苯分解菌T1菌時,對於三氯乙烯的生物降解共代謝行為,以作為當現地菌無法成功馴養的另一選擇。
半連續馴養操作簡單,可迅速評估生物復育之可行性,適用在土壤地下水污染場址整治方法之初期篩選。
就菌數而言,多落在10^5~10^6 cells/ml 之間;營養鹽純氧曝氣至32ppm以上,溶氧消耗(包括實驗過程非生物性損耗)多在25~30ppm,因此溶氧充足;根據單一培養時程實驗結果,幾乎沒有中間產物的產生,僅發現在約10小時前後產生Vinyl Chloride等中間產物且濃度很低,顯示本實驗處於穩定的好氧環境。根據現地組II與現地組I的三氯乙烯移除率比較,趨勢結果相似,亦顯示操作過程對實驗結果的變異性很小,操作穩定。
在三氯乙烯濃度約640ppb, 甲苯濃度約9500ppb 的情況下,植種組三氯乙烯共代謝去除率達65.4+-6.8 %,兩次現地組各達67.5+-9.9 %及73.5+-12.2 %。穩態下三氯乙烯共代謝去除率達76.5+-7.4 %。
建議未來進一步執行連續流試驗研究;再經現地模廠試驗驗證現地之生物共代謝降解效率;最後實際應用在台灣本土三氯乙烯之污染場址。
none
1. Arciero, D., Vannelli, M. Logan, and A. B. Hooper. 1989, Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europea. Biochem. Biophys. Res. Commun. 159:640-643.
2. Ewers, J., W. Clemens, and H. J. Knackmuss. 1991. Biodegradation of chloroethenes using isoprene as co-substrate, pp. 77-84. In International Symposium on Environmental Biotechnology. Royal Flemish Society of Engineers, Ostend, Belgium.
3. Fogel, M. M., A. R. Taddeo, and S. Fogel. 1986. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51:720-724.
4. Henry, S. M. 1991. Transformation of trichloroethylene by methanotrophs from a groundwater aquifer. Ph. D. thesis. Stanford University, Stanford, Calif.
5. Henson, J. M., M. V. Yates, J. W. Cochran, and D. L. Shackleford. 1988. Microbial removal of halogenated methanes, ethanes, and ethylenes in an aerobic soil exposed to methane. FEMS Microboil. Ecol. 53:193-201.
6. Nelson, M. J. K., S. O. Montgomery, W. R. Mahaffey, and P. H. Pritchard. 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53:949-954.
7. Nelson, M. J. K., S. O. Montgomery, E. J. O’Neill, and P. H. Pritchard. 1986. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52:383-384.
8. Nelson, M. J. K., S. O. Montgomery, and P. H. Pritchard. 1988. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl. Environ. Microbiol. 54:604-606.
9. Vannelli, T., M. Logan, D. M. Arciero, and A. B. Hooper. 1990. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56:1169-1171.
10. Wackett, L. P., G. A. Brusseau, S. R. Householder, and R. S. Hanson. 1989. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55:2960-2964.
11. Folsom, B. R., P. J. Chapman, and P. H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrate” , Applied and Environmental Microbiology, Vol. 56, No. 5, pp. 1279-1285, 1990.
12. Fries, M. R., L. J. Forney, and J. M. Tiedje, “Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred”, Applied and Environmental Microbiology, Bol. 63, No. 4, pp. 1523-1530, 1997.
13. Hopkins, G. D., L. Semprini, and P. L. McCarty “Microcosm and In Situ Field Studies of Enhanced Bioremediation of Trichloroethylene by Phenol-Utilizing Microorganisms”, Appl. and. Environ. Microbiolgy, 59: 2277-2285, 1993.
14. Hopkins, G. D. and P. L. McCarty “Field Evaluation of in Situ Aerobic Cometabolism of Trichloroethylene and Three Dichloroethylene Isomers Using phenol and Toluene as the Primary Substrates” Environ. Sci. Technol. 29: 1628-1637, 1995.
15. Sutfin J. A., and Ramey D., “In Situ Biological Treatment of TCE-Impacted Soil and Groundwater: Demonstration Results” , Environmental Progess, Vol. 16, No. 4, pp. 287-296,1997.
16. Kramme, M. L., K. N. Timmis, and D. F. Dwyer, “Degradation of trichloorethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms” , Applied and Environmental Microbiology, Vol. 59, No. 8, pp.2746-2749, 1993.
17. Lisa Alvarez-Cohen, and Perry L. McCarty, “Effects of Toxicity, Aeration, and Reductant Supply on Trichloroethylene Transformation by a Mixed Methanotrophic Culture” Applied and Environmental Microbiology, Vol. 57, No. 1, pp. 228-235, 1991.
18. McCarty, P. L., M. N. Goltz, G. D. Hopkins, M. E. Dolan et al. “Full-Scale Evaluation of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater Through Toluene Injection” Environ. Sci. Technol. 32: 88-100, 1998.
19. Oldenhuis, R., R. L. M. Vink, D. B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydro-carbons by Methylosinus
trichosporium OB3b expressing soluble methane monoosygenase” , Applied and Environmental Microbiology , Vol. 55, No. 11, pp. 2819-2826.1989.
20. Shields, M. S., S. O. Montgomery, S. M. Cuskty, P. J. Chapman, and P. H. Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene” , Applied and Environmental Microbiology, Vol. 57, No. 7, pp. 1935-1941, 1991.
21. Speitel, G. E., and D. Mclay, “Biofilm reacter for Treatment of Gas Streams Containing Chlorinated Solvents” , Journal of Environmental Engineering, Vol. 119, No. 2, pp. 658-678, 1993.
22. Wackett, L. P., and D. T. Gibson, “Degradation of tricfloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1” , Applied and Environmental Microbiology”, Vol. 54, No. 7, pp. 1703-1708, 1988.
23. Bettmann H. and Rehm H. J., “Continuous degration of phenols by Pesudomanas putida P8 entrapped in Polyacrylamide-hydrazide,” Appl. Microbiol. Biotechnol.22:389-393,1985
24.Brusseau G.A., H.C. Tsien, R.S. Hanson, and L.P. Wackett, “Optimization of Trichloroethylene Oxidation by Methanotrophs and the Use of a Colorimetric Assey to Detect Soluble Methane Monooxygenase Activity” ,Biodegradation, Vol.1,pp19-29,1990
25.Dabrock,B.,J.Riedel,J.Bertram,and G.Gottschalk, “Isopropylbenzene
(cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria” Arch. Microbilo.,Vol.158, pp9-13,1992
26.Folsom, B.R., P.J.Chapman, and P.H. Pritchard, “Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrate” ,Applied and Environmental Microbiology, Vol.56, No.5,pp1279-1285,1990
27. Fries M. R., L. J. Forney, and J. M. Tiedje, “Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred” , Applied and Environmental Microbiology, Bol.63, No.4,pp1523-1530,1997
28. Hopkins, G.D. L. Semprini, P.L. McCarty “Microcosm and In Sitn Field Studies of Enhanced Bioremediation of Trichloroethylene by phenol-Utilizing Microorganisms” , Appl.and Environ. Microbiolgy, 59:2277-2285, 1993
29. Hopkins, G.D. and P. L. McCarty “Field Evaluation of in Situ Aerobic Cometabolism of Trichloroethylene and Three Dichloroethylene Isomers Using phenol and Toluene as the Primary Substrates” Environ. Sci. Technol. 29:1628-1637,1995
30. Julie A.Sutfin,and Dotti Ramey, “In Situ Biological Treatment of TCE-Impacted Soil and Groundwater: Demonstration Results”,
Environmental Progess, Vol.16, No.4,pp287-296,1997.
31. Kao, C.M. and J. Prosser “Intrinsic Bioremediation of trichloroethylene and Chlorobenzene: field and laboratory studies” J. of Hazardous Materials B69:67-79,1999
32.Kramme, M.L., K.N.Timmis, and D.F. Dwyer, “Degradation of trichloorethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms” ,Applied and Environmental Microbiology, Vol.59,No.8,pp2746-2749,1993
33.Lisa Alvarez-Cohen, and Perry L. McCarty, “Effects of Toxicity, Aeration, and Reductant Supply on Trichloroethylene Transformation by a Mixed Methanotrophic Culture” Applied and Environmetal Microbiology, Vol.57,No.1,pp228-235,1991
34.McCarty, P.L.,M.N. Goltz, G.D. Hopkins, M.E. Dolan et al. “Full-Scale Evaluation of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater Through Toluene Injection” Envirom. Sci. Technol. 32: 88-100, 1998
35.Nelson, M. J., S .O .Montgomery, W.R.Mahaffey, and P.H.Pritchard, “Biodegradation of trichloroethylene and involvment of an aromatic bioldegradative pathway” ,Applied and Environmental Microbiology, Vol.53, No.5,pp.949-954,1989.
36. Oldenhuis, R., R.L.M. Vink, D.B. Janssen, and B. Witholt, “Degradation of chlorinated aliphatic hydro-carbons by Methylosinus trichosporium OB3b expressing soluble methane monoosygenase”,Applied and Environmental Microbiology, Vol.55,No.11,pp.2819-2826,1989.
37. Perry L. Mccarty, Mark N. Goltz, Gary D. Hopkins, Mard E. Dolan, Jason P. Allen, “Full-Scal Evaluation of In Situ Cometabolic Degradation of Trichloroethylene in Groundwater through Toluene Injection” , Environ. Sci. Technol, 32,pp88-100,1998.
38.Shields,M.S., S.O.Montgomery, S.M.Cuskty, P.J.Chapman, and P.H.Pritchard, “Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene” ,Applied and Environmental Microbiology, Vol.57,No.7,pp1935-1941,1991.
39. Tramper,J. and Grootjen, D.R. J., Operation performance of Nitrobacter agilis immobilized in carrageenan, Enzyme Microb. Technol .,8,pp447-480,1986
40.Tschantz, M.F., J.P. Bowman, P.R. Bienkowski, et al. “Methano-trophic TCE Biodegradation in a Multi-Stage Bioreactor” Environ. Sci. Technol. 29:2073-2082,1995
41.Vidic,R.D.,Pohland, F.G.,Treatment Wall, Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA, USA,(1996)
42.Vogel,T.M., P.L.McCarty, “Biotransformation fo tetrachloroethylene to trichloroethytlene, dichloroethylene, vinyl chloride,and carbon dioxide under methanogenic conditions” ,Applied and Environmental Microbiology, Vol.49,No.5,pp1080-1083,1985.
43. Wackett,L.P. and D. T. Gibson, “Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1”, Applied and Environmental Microbiology, Vol.54,No.7,
pp1703-1708,1988
44. Wackett, L., P. G. A. Brusseau, S. R. Householder, and R. S. Hanson “Sruvey of microbial oxygenases : trichloroethylene degradation by propane-oxidizing bac teria” ,Applied and Environmental Microbiology, Vol.55,No.11, pp2960 – 2964, 1989
45.Wanner, U. I. And P. L. McCarty. “Development and evaluation of semicontinuous slurry microcosms to simulate in-situ biodegradation of trichloroethylene in contaminated aquifers” , Environ. Sci.Technol. , 31, 2915-2922, 1997.
46.Yin, Y.,Allen, H.E., “In situ Chenical Treatment,” Technology Evaluation Report, Ground-Water Remediation Technologies Analysis Center, Pittsburgh, PA,USA, 1999.
47行政院環保署,環境衛生及毒物管理處,http://www.epa.gov.tw/J/toxic/
48.林財富、洪旭文, “受污染場址現地化學處理方法介紹” ,工業污染防治,72期,pp178-200,1999
49.許益源、陳淑珍、朱順傑、陳誼彰 “以微生物好氧分解作為地下水中微生物厭氧分解含氯有機物之後續處理方式的可行性評估” 第二十六屆廢水處理研討會,2001
50.蔡文田, “含氯有機溶液之毒性及新陳代謝機制” ,工業污染防治,第43期,pp175-187,1992
51.蔡文田、邱伸彥, “蒸氣脫脂用含氯溶劑之特性管制和污染預防” ,工業污染防治,第41期,pp145-160,1992
52.蔡文田, “含氯溶劑可行減廢技術介紹” ,工業污染防治,第47期,pp171-182,1993
53.詹祐嘉、李志源、劉文得 “酚對三氯乙烯共代謝之競爭抑制現象” 第二十五屆廢水處理研討會 , 2000.
54.呂淑惠、李季眉、盧至人 “酚分解菌共代謝三氯乙烯之連續流試驗” 第二十四屆廢水處理技術研討會 pp481-492,1999。
55.黃錦怡、盧至人、張峻嘉、謝瑜芬, ”固定化細胞對三氯乙烯好氧分解的效應” ,第二十四屆廢水研討會,pp519-523,1999。
56.張峻嘉、盧至人、李季眉、黃錦怡、邱明良 “酚分解菌共代謝三氯乙烯之研究-砂管柱連續流試驗” 第二十四屆廢水處理技術研討會 pp179-184,1999。
57.詹祐嘉、李志源、劉文得 “酚對三氯乙烯共代謝之競爭抑制現象” 第二十五屆廢水處理技術研討會 2000。
58.官知嫻、李季眉、盧至人,「酚分解菌共代謝三氯乙烯」,第二十三屆廢水處理技術研討會論文集,台中(1998)。
59.林建芬,「甲烷分解菌對三氯乙烯好氧分解之影響」,碩士論文,國立中興大學環境工程研究所,台中(1994)。
60.陳家洵,「台灣地區地下水污染之討論」,現代化研究,第12期第49-55頁(1997)。
61.陳家洵,「地下水污染之討論」,應用倫理研究通訊,第3期,第19-23頁(1997).
62.陳慎德、王愷中、何秉宜、何忠賢,「對台灣地區土壤地下水整治工作之看法」,環境工程會刊,第10卷,第3期,第67-82頁 (1999)。
63.周孟琦、高銘木 “三氯乙烯在土壤之吸附反應及共代謝生物降解之研究”,碩士論文,2002。
64.李正怡、李春樹、高銘木,”利用甲苯共代謝三氯乙烯之生物濾床效率提升之研究”,第十六屆空氣污染控制技術研討會,pp737-742,1999。
65.簡義杰、李春樹、高銘木,”固定化甲苯分解菌共代謝水三氯乙烯之研究”,第二十六屆廢水處理技術研討會,Section 1-32,2001。