簡易檢索 / 詳目顯示

研究生: 陳健益
CHEN, CHIEH-I
論文名稱: 無元素葛勒金法在古典板分析之應用
Element-Free Galerkin Method for the Analysis of Plates
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 57
中文關鍵詞: 微分再生核無元素法平板理論
外文關鍵詞: Theory of Plates, Element-free Galerkin Method, Differential Reproducing Kernel Approximation
相關次數: 點閱:94下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以葛勒金弱積分式分析古典平板受力行為,其中之形狀函數及其各階導數以無網格之微分再生核近似法(differential reproducing kernel approximation method,DRKM)計算,位移邊界條件以懲罰法處理,數值計算範例為分析四種不同形式的平板問題,分別為:四邊滾支承受正弦載重、四邊滾支承受均勻載重作用、四邊固定端受均勻載重作用、兩邊滾支承與兩邊固定支承承受均勻載重作用,利用數值分析得到的最大位移、最大彎矩的數值解與其解析解進行比較分析。

    In this paper, we use element-free Galerkin method to analysis the behavior of plates under load. Where the shape function and its derivative are obtain by the differential reproducing kernel approximation and the displacement boundary condition are impored by the penalty method. In the numerical example we analysis three types of plates under various loading:simply supported rectangular plated under sinusoidal load, simply supported and uniformly loaded rectangular plates, rectangular plates with all edges built in, rectangular plates with two opposite edges simply supported and the other two edges clamped, and compare the maximum displacement and maximum moment with the analytical solution.

    摘要.....................................................II 致謝.....................................................IV 表 目 錄................................................VII 圖 目 錄...............................................VIII 第一章 緒論...............................................1 1.1 前言..............................................1 1.2 無元素法的發展....................................2 1.3 本文架構..........................................3 第二章 古典平板理論.......................................5 2.1古典平板理論.......................................5 2.2四邊形平板之解析解.................................9 2.2.1 四邊簡支承板受正弦載重解析解.................9 2.2.2四邊簡支承板受均勻載重解析解.................10 2.2.3四邊固定端板受均勻載重解析解.................10 2.2.4兩邊滾支承與兩邊固定支承板受均勻載重解析解...11 第三章 微分再生核近似理論...............................13 3.1 離散的再生核近似.................................13 3.2 再生核形狀函數微分...............................15 3.3 加權函數與鄰近點的選取...........................19 第四章 數值算例之分析....................................21 4.1平板四邊滾支承受正弦載重分析......................22 4.2平板四邊滾支承受均勻載重分析......................24 4.3平板四邊固定端受均勻載重分析......................27 4.4平板兩邊滾支承與兩邊固定支承受均勻載重分析........29 第五章結論...............................................31 參考文獻.................................................32 自述.....................................................57

    [1] L. B.Lucy, Anumerical approach to the testing of the
    fission hypothesis, The Astron. J.8 (12), 1013-1024
    (1977).
    [2] B. Nayroles, G. Touzot and P. Villon, Generalizing
    the Finite Element method diffuse approximation and
    diffuse elements, Comput. Mech.10, 307-318 (1992).
    [3] T. Belytschko, L. Gu, and Y. Y. Lu, Fracture and crack
    growth by element-free Galerkin methods, Model. Simul.
    Mater.Sci. Engrg, 2,519-534 (1994).
    [4] W. K.Liu, S. Jun and Y. F.Zhang, Reproducing kernel
    particle methods, Int. J. Number. Methods Engrg.20,
    1081-1106 (1995).
    [5] J. S.Chen, C.T.Wu and W.K.Liu, Reproducing kernel
    particle methods for large deformation analysis of non-
    linear structures,Computer Methods in Applied
    Mechanics And Engineering. 139,195-227. (1996).
    [6] E. Oñate, S. Idelsohn, O. C.Zienkiewicz, R. L.Taylor
    and C.Sacco, A stabilized finite point method for
    analysis of fluid Mechanics problems, Computer Methods
    in Applied Mechanics &Engineering, 139 ,315-346 (1996).
    [7] S.Li, W.Hao and W. K. Liu, Numerical simulation of
    large deformation Of thin shell structures using
    meshfree methods. Computational Mechanics 25, 102-116
    (2000).
    [8] G.J.Wagner and W. K.Liu,Turbuleence simulation and
    multiple Scale subgrid models. Computational Mechanics
    117-136(2000).
    [9] J.-S.Chen,H.-P. Wang ,S.Yoon and Y. You ,Some recent
    Improvements in meshfree methods for incompressible
    finite elasticity boundary value problems with contact
    Computational Mechanics 25 137-156(2000).
    [10]盛若磐,”元素釋放法積分法則與權函數之改良”,近
    代工程計算論壇(2000)論文集,國立中央大學土木系(2000).
    [11] T. Belytschko, Y. Krongauz, D. Orang and N. Fleming,
    Meshless method:An Overview and Recent Development,
    Computer Method in Applied Mechanics & Engineering,
    139,3-47(1996).
    [12] P. Krysl and Belytschko, ESFLIB:A Library to Compute
    The Element Free Galerkin Shape Function, Computer
    Methods in Applied Mechanics & Engineering, 190, 2181-
    2205(2001).
    [13] R. Szilard, Theory and analysis of plates :classical
    and numerical methods, N.J.,Prentice-Hall, Englewood
    Cliffs, 28-36(2007)
    [14] J.N.Reddy, An introduction to the finite element
    method-2nd, McGRAW-Hill, Inc,508-514(1993).
    [15] S.Timoshenko and S.Woinowsky-krieger, Theory of
    plates and shells, McGRAW-Hill,Inc, 102-111, 113-122,
    185-192,197-205(1959).

    下載圖示 校內:立即公開
    校外:2008-08-20公開
    QR CODE