簡易檢索 / 詳目顯示

研究生: 陳玠融
Chen, Chieh-Jung
論文名稱: 壓電三明治樑之能量擷取電路分析
Analysis of Energy Harvesting Circuit on A Sandwich Beam Surface Mounted with Piezoelectric Material
指導教授: 王榮泰
Wang, Rong-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 壓電三明治樑能量擷取有限元素法壓電材料再生能源
外文關鍵詞: energy harvesting, finite element method, piezoelectric material, renewable energy, Timoshenko beam
相關次數: 點閱:156下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科技的日新月異與工業的發展,生活品質提升之餘,對能源的需求也越龐大。但地球資源卻不是用之不竭的,故再生能源與發電的議題受到大家的關注,尤其是壓電材料所能產生的壓電效應也一直都是工程師與科學家關心的議題之一。壓電材料在發電過程中,具有不產生任何廢棄物及汙染,並且可以不斷重複使用的優點,為可以永續回收使用的能源,但由於其效率較低,故本研究設計出一壓電能量擷取電路,希望能進行分析並使壓電材料所產生能量之擷取效率有所提升。
    本研究利用一根Timoshenko懸臂樑,其上下表面皆貼附有壓電片,探討當此模型受外力作用藉由正壓電效應所產生之電能,並加以儲存。首先利用有限元素法分析此模型,再用元素堆疊法合併求出本構方程式,最後用Newmark’s 數值積分法計算此懸臂樑受外力之動態行為,並經由本研究之壓電能量擷取電路,儲存其電能。
    在四種模擬情況下,對本研究所設計之能量擷取電路各別進行探討,發現所儲存電壓與基本壓電能量擷取電路後的電壓相比,雖然成本稍微提高,但都顯示出在這四種不同模擬情況下,本研究的輸出電壓與儲存到的電容都遠較基本能量擷取電路為佳,效率均有明顯改善。最後,經由本研究之實驗結果的證實,希望壓電材料發電能成為未來生活中重要的電能來源之一。

    Using piezoelectric material as a power generation has an advantage of not generating any waste and pollution, and can be repeated using. A composited beam both sides surface mounted with piezoelectric material is considered in this thesis. The purpose of this thesis is to design an energy harvesting circuit for storing electrical energy generated by the piezoelectric material. First the finite element method is used to set the model up; the Newmark's numerical integration method is then adopted to calculate the dynamic behavior of this cantilever caused by the external force. The mathematical model is based on continuous displacement conditions. Governing equation and boundary conditions are derived via Hamilton’s Principle.

    The energy harvesting circuit is designed individual in four situations, and compares it with another circuit which is seen in papers. Though the cost is slightly higher, it shows that in these simulations, the output voltage of the thesis and the energy stored in the capacitors are far more than the other. Efficiency has improved significantly.

    目錄 摘要 I Extend Abstract II 誌謝 VII 目錄 VIII 圖目錄 XI 符號說明 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 文獻回顧 3 1-4 論文架構 5 1-5 本研究基本假設 5 第二章 壓電複合層樑之運動方程式 6 2-1 原理簡介 6 2-2 複合層Timoshenko樑的模型設定 7 2-2-1 模型設定 7 2-2-2 模型之位移函數 8 2-3 線性壓電理論 9 2-4 壓電三明治樑的電能、應變能和動能 11 2-5 整體壓電三明治樑的運動方程式 15 2-6 邊界條件 16 2-7 壓電複合層樑之有限元素法分析 18 2-8 壓電三明治樑的元素堆疊與自然頻率 25 2-9 壓電複合層樑的感應電壓分析 26 第三章 壓電系統之能量擷取電路設計 28 3-1 電路模型 28 3-2 整流電路 30 3-2-1 半波整流電路 30 3-2-2 全波整流電路 31 3-2-3 整流電路比較 33 3-3 濾波電路 34 3-4 穩壓電路 36 3-5 阻抗匹配電路 37 3-6 壓電能量擷取電路設計 38 第四章 數據模擬與分析 40 4-1 材料設定與參數 40 4-1-1 材料設定 40 4-1-2 有限元素法自然頻率 41 4-2 模擬結果與分析 42 4-2-1 施予一個瞬間集中力模擬與分析 43 4-2-2 週期性變化的外力模擬與分析 47 4-2-3 週期性的瞬間集中力模擬與分析 51 4-2-3 時間為隨機的瞬間集中力模擬與分析 54 第五章 結論與未來展望 60 5-1結論 60 5-2 未來展望與建議 62 參考文獻 63 附錄A 67 附錄B 68 附錄C 69 附錄D 71

    [1] 吳國光、張育誠、焦鴻文,“行動發電廠—淺談振動能源利用”,能源報導,經濟部能源局,p. 14,June,2010。
    [2] Mason, W. P., “Piezoelectricity, Its History and Applications,” J. Acoust. Soc. Am., Vol. 70, No. 6, pp. 1561-1566, December, 1981.
    [3] Curie, P., “Radioactive Substances, Especially Radium”, Nobel Lecture, June 6, 1905.
    [4] Crawly, E. F. and Luis, J., “Use of Piezoelectric Actuators as Elements of Intelligent Structures”, AIAA Journal, Vol.25, No.10, pp.1375-1385, 1987.
    [5] Kunkel, H. A., Locke, S. and Pikeroen, B., “Finite-element Analysis of Vibrational Modes in Piezoelectric Ceramic Disks,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 37, pp. 316-328, July, 1990.
    [6] Robbins, D. H. and Reddy, J. N., “Analysis of Piezoelectrically Actuated Beams Using a Layer-Wise Displacement Theory,” Computers and Structures, Vol. 41, No. 2, pp. 265-279, 1991.
    [7] Smits, J. G. and Ballato, A., “Dynamic Admittance Matrix of Cantilever Bimorphs,” Journal of Microelectromechanical System, Vol. 3, No. 3, pp. 105-112, 1994.
    [8] Smits, J. G., “Design Consideration of a Piezoelectric-on-silicon Microrobot,” Sensor and Actuators, A35, pp. 129-135, 1992
    [9] Brooks, S. and Heyliger, P., “Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators,” Journal of intelligent Material Systems and Structures, Vol. 5, pp. 635-646, 1994.
    [10] Rogacheva, N. N., “Theory of Piezoelectric Shells and Plates,” 1st ed., CRC Press, USA, 1994.
    [11] Yang, J. S. and Batra, R. C., “Free Vibrations of a Piezoelectric Body,” Journal of Elasticity, Vol, 34, No. 4, pp. 239-254, 1994.
    [12] Sciuva, M. D. and Icardi, U., “Large Deflection of Adaptive Multilayered Timoshenko Beams,” Computers and Structures, Vol. 31, No.1, pp.49-60, 1995.
    [13] Dude, G. P., Kapuria, S. and Dumir, P. C., “Exact Piezothermoelastic Solution of Simply-supported Orthotropic Flat Panel in Cylindrical Bending,” Journal of Intelligent Material Systems and Structures, Vol. 38, No. 11, pp.1161-1177, 1996
    [14] Chen, C. Q., Wang, X. M. and Shen, Y. P., “Finite Element Approach of Vibration Control Using Self-sensing Piezoelectric Actuators,” Computers and Structures, Vol. 60, No. 3, pp. 505-512, 1996.
    [15] Tzou, H. S. and Wang, G. C., “Distributed Structural Dynamics Control of Flexible Manipulators-I. Structural Dynamics and Viscoelastic Actuator,” Computers and Structures, Vol. 35, pp. 669-677, 1990.
    [16] Ha, S. K., Keilers, C. and Chang, F. K., “Finite Element Analysis of Composite Structures Containing Distributed Piezoelectric Sensors and Actuators,” AIAA Journal, Vol. 30, pp. 772-780, 1992.
    [17] Zhou, Y. H. and Wang, J., “Vibration Control of Piezoelectric Beam Type Plates with Geometrically Nonlinear Deformation,” International Journal of Nonlinear Mechanics, Vol. 39, No. 6, pp. 909-920, 2004.
    [18] Smits, J. G., Choi, W. S. and Ballato, A., “Resonance and Antiresonance of Symmetric and Asymmetric Piezoelectric Flexors,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, No. 2, pp. 250-258, 1997.
    [19] Abramovich, H. and Livshits, A., “Dynamic Behavior of Cross-Ply Laminated Beams with Piezoelectric Layers,” Computers and Structures, Vol. 25, pp. 371-379, 1993.
    [20] Pan, J., Hansen, C. H. and Snyder, S. D., “A Study of Response of a Simple Supported Beam to Excitation by a Piezoelectric Actuator,” Journal of intelligent Material Systems and Structures, Vol. 3, pp. 120-130, 1992.
    [21] Triplett, A. and Quinn, D. D., “The Effect of Nonlinear Piezoelectric Coupling on Vibration-based Energy Harvesting,” Journal of Intelligent Material Systems and Structures, Vol. 20, No. 16, November, 2009
    [22] 陳鼎鈞,“壓電圓盤自然頻率值用於壓電材料參數之擷取”,國立中山大學機械與機電工程學系碩士班碩士論文,高雄,2010.
    [23] Mason, W. P., “Piezoelectric Crystals and Their Application to Ultrasonics, 2nd ed.”, Van Nostrad Company, New York, 1950.
    [24] Mason, W. P. and Jaffe, H., “Methods for Measuring Piezoelectric, Elastic, and Dielectric Coefficients of Crystals and Ceramics,” Proceedings of the IRE, Vol. 42, No. 6, pp. 921-930, 1954.
    [25] IEEE Standard on Piezoelectricity, IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
    [26] kwork, K. W., Chan, H. L. W. and Choy, C. L., “Evaluation of the Material Parameters of Piezoelectric Materials by Various Methods,” IEEE Transactions on Ultrasonics, Ferroelectics, and Frequency Control, Vol. 44 No. 4, pp. 733-742, 1997.
    [27] 李育仁,“壓電樑自然頻率值用於壓電材料參數之擷取”,國立中山大學機械與機電工程學系碩士班碩士論文,高雄,2004。
    [28] 戴毓城,“Study of the Coupling Effect of Force and Voltage on Timoshenko Beam with Surface Mounted Piezoelectric Material”,國立成功大學工程科學系碩士班碩士論文,2014。
    [29] 林蕙君、舒貽忠,“壓電振能擷取簡介”,國立台灣大學應用力學研究所,台北,2008。
    [30] 李聰勝,“Dynamics Analysis of Timoshenko Beam with Piezoelectric Material under Force Loading and Voltage Coupling”,國立成功大學工程科學系碩士班碩士論文, 2013。
    [31] 王綵綾,“Study of the Coupling Effects of Force and Voltage on Timoshenko Beam with One Side Surface Mounted Piezoelectric Material”,國立成功大學碩士班碩士論文,2014。

    下載圖示 校內:2018-08-31公開
    校外:2018-08-31公開
    QR CODE