| 研究生: |
鄭彩華 Cheng, Tasi-Hua |
|---|---|
| 論文名稱: |
彩色濾光片濺鍍製程之品質管制系統研發 The Development of a Quality Control System for Color Filter Sputtering Process |
| 指導教授: |
楊大和
Yang, Taho 何明字 Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 費雪區別分析 、馬氏距離 、類神經網路 、品質損失函數 |
| 外文關鍵詞: | Quality Loss Function, Artificial Neural Network, Mahalanobis Distance, Fisher Discriminant Analysis. |
| 相關次數: | 點閱:88 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光電產業在自動化的潮流下,使得製造程序日漸複雜和精密,製程技術也不斷的在精進,要提高產品品質並降低製造成本,良好的製程管制將是重要的課題。展望未來,TFT-LCD不論是在電視、電腦、監視器等市場將進行全面性的取代,在此龐大的產業規模下,獲利與否將是在競爭市場上生存的關鍵因素。
本研究使用倒傳遞類神經網路對TFT-LCD產業之濺鍍製程建構一多重輸入單一輸出之製程控制系統,但由於現場資料收集之方式不良,造成研究上的限制,經過了本文考慮製程為一動態系統而提出pattern觀念之資料前處理後,仍無法架構出良好之預測模式。工程製程管制之觀念無法落實,退而採用傳統之管制圖與多變量之馬氏距離及區別分析來診斷膜厚品質,最後分析顯示,考慮多變量之方法比傳統管制法更有效地診斷產品品質。雖無法建構出有良好品質診斷能力之工程製程管制系統,但本研究在資料處理及觀念上所提之方法仍是有相當的貢獻。
With the trend of automation the manufacturing process of optical electrical industry is more complicated and the technology keeping progressing. In order to improve the product’s quality and to reduce the production’s cost, it is very important to have a control system. In the future, the TFT-LCD will replace the products including the TV, computer, monitor, etc. Under the huge scale of industry, it will be the key factor of surviving on the competitive market to make a profit.
In this research, applying Artificial Neural Network for a sputter process constructs a multiple-input single-output process quality control system. Due to the way the raw data are collected in the sputter process is bad, causing many constraints in this study. This research proposes a preprocessed method with the concept of pattern for this dynamic system. After preprocessing, the prediction model wasn’t still created, so this research uses the Control Chart, Mahalanobis Distance and Fisher Discriminant Analysis separately to diagnose the thick quality. These application studies demonstrated that, in comparison to conventional control chart, the multivariate analysis is more accurate and efficient. Although the prediction model with good performance isn’t constructed, the method and concept of data process in this research have fairly good contributions.
ITIS產業資訊服務網,(民94,3月),Available:http://www.itis.org.tw/viewreporter.jhtm?WSOPTION=searchRptByClk#
技術尖兵,(民93,8月),Available:http://www.st-pioneer.org.tw/modules.php?name=magazine&pa=showpage&tid=2158
李柏甫,(民93),TFT-LCD濺鍍製程之智慧型診斷系統之發展,成功大學製造工程研究所,碩士論文。
林傑斌,(民92),SPSS 11.0與統計模式建構,文魁資訊股份有限公司。
張建邦,(民86),多變量分析,三民書局。
陳順宇,(民93),多變量分析,華泰書局。
葉怡成,(民89),應用類神經網路,儒林圖書有限公司。
數位時代雙週,(民91,4月),Available:http://www.bnext.com.tw/mag/2002_04/2002_04_2072.html
鄭春生,(民90),品質管理,三民書局。
羅華強,(民92),類神經網路─MATLAB 的應用,清蔚科技出版。
蘇朝墩,(民92),品質工程,中華民國品質學會。
蘇育全, 鄭芳田, 黃國偉, 洪敏雄, 楊大和,2004,一種品質預測架構,第十三屆全國自動化科技研討會,台北,國立台北科技大學,中華民國九十三年六月十七日~十八日。
Al-Assaf, Y., 2004, Recognition of control chart patterns using multi-resolution wavelets analysis and neural networks, Computers & Industrial Engineering, 47, 17–29.
Alberto, W.D., Pilar, D.M.D, Valeria, A.M., Fabiana, P.S., Cecilia, H.A. and Angeles, B.M.D.L., 2001, Pattern Recognition Techniques for Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study: Suqui´ River Basin (Co´ rdoba–Argentina ), Water Research, 35, 2881-2894.
Box, G.E.P. and Kramer, T., 1992, Statistical Process Monitoring and Feedback Adjustment-A Discussion, Technometrics, 34, 251-267.
Chang, T.C., 2004, Shewhart Charts for Monitoring the Variance Components, Journal of Quality Technology, 36, 293-308.
Chiang, L.H. and Pell, R.J., 2004, Genetic Algorithms Combined with Discriminant Analysis for Key Variable Identification, Journal of Process Control, 14, 143–155.
Cook, D. and Chiu, C.C., 1998, Using Radial Basis Function Neural Networks to Recognize Shifts in Correlated Manufacturing Process Parameters, IIE Transactions, 30, 227-234.
Curve Fitting Toolbox for Use with MATLAB®, 2001, The MathWorks, MA.
Elsayed, E.A., Ribeiro, J.L. and Lee, M.K., 1995, Automated Process Control and Quality Engineering for Processes with Damped Controllers, International Journal of Production Research, 33, 2923-2932.
Guh, R.S. and Tannock, D.T., 1999, A Neural Network Approach to Characterize Pattern Parameters in Process Control Charts, Journal of Intelligent Manufacturing, 10, 449-462.
Lachman-Shalem, S., Grosman, B. and Lewin, D.R., 2002, Nonlinear Modeling and Multivariable Control of Photolithography, IEEE Transactions on Semiconductor Manufacturing, 15, 310-322.
Lee, L.L., Schaper, C.D. and Ho, W.K., 2002, Real-Time Predictive Control of Photoresist Film Thickness Uniformity, IEEE Transactions on Semiconductor Manufacturing, 15, 51-59.
Lu, C.W., 1999, EWMA Control Charts for Monitoring the Mean of Autocorrelated Processes, Journal of Quality Technology, 31, 166-188.
SPSS for Windows, version10.0, 1999, SPSS, Illinois.
Su, Y.C., Cheng, F.T., Huang, G..W., Lin, R.C., Hung, M.H. and Yang, T., Quality Prognostics Scheme for Semiconductor and TFT-LCD Manufacturing Processes, submitted to IEEE Transactions on Semiconductor Manufacturing.
Wang, J. and Spanos, C.J., 2002, Real-Time Furnace Modeling and Diagnostics, IEEE Transactions on Semiconductor Manufacturing, 15, 393-403.