研究生: |
黃佑沂 Huang, Yu-yi |
---|---|
論文名稱: |
不同退火溫度之有機駢苯衍生物薄膜電晶體特性研究 Perylene derivative based organic thin film transistors fabricated under various annealing conditions |
指導教授: |
周維揚
Chou, Wei-yang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 有機駢苯衍生物 、退火 |
外文關鍵詞: | PTCDI-8C, annealing |
相關次數: | 點閱:92 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以有機駢苯衍生物N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-8C)作為有機薄膜電晶體主動層之元件特性研究。首先,利用熱蒸鍍法製作以PTCDI-8C薄膜為主動層之下閘極式頂部接觸的電晶體元件結構。本論文主要分為兩部份,第一部分為以聚亞醯胺薄膜(polyimide;簡稱PI)作為修飾層探討表面能與電晶體傳輸特性的關係。第二部份為使用不同電極當作電晶體之源、汲極製成之有機薄膜電晶體經過不同溫度退火處理後元件電性的變化。
第一部份,使用PI作為修飾層,降低半導體層與絕緣層表面能差異過大的問題,經由降低絕緣層的表面能,可使載子遷移率有顯著的提升,由0.07 提升到0.6 cm2/Vs 。
第二部份,是採用不同金屬(Au、Ag、Al等)作為電晶體之源、汲極,且將元件在不同溫度下退火,溫度由50至110 ℃,經由電性分析,可得知,退火溫度70 ℃為最適合之溫度,在此溫度下薄膜電晶體元件呈現最佳的載子傳輸效能。再經由X-ray繞射分析可以研究薄膜微結構的有序性,發現在退火溫度70 ℃時繞射主峰有最小的半高寬,表示以此溫度退火後的薄膜微結構較好,有利於載子傳輸。
We have studied the thin-film transistors and electronic transport properties of n-type organic semiconductor, N,N'-dioctyl-3,4,9,10- perylene tetracarboxylic diimide(PTCDI-8C). Inverted staggered transistor structure with a bottom gate was used to form the PTCDI-8C-based thin- film transistors in which the thin films of the PTCDI-8C were prepared by thermal evaporation. Two research topics are contained in the thesis. In the first topic, we investigated the relationship between PTCDI-8C thin-film transistors characteristics and surface energy of polyimide (PI) played a role as a modification layer on gate dielectric surface. In the second topic, a series of the thin-film transistors were fabricated under different annealing temperatures. The mobility of organic thin-film transistors has been improved from 0.07 to 0.6 cm2/Vs by using PI as a modification layer due to reducing of the surface free energy of SiO2 dielectric. After thermal treatments under 50 – 110 °C, the high electron mobility of 0.8 cm2/Vs was achieved at 70 °C. At the same time, the smallest half-width of X-ray diffraction peak under annealing temperature of 70 °C indicates that a more homogeneous microstructure associated with lower molecular relaxation energy could benefit carrier transportation.
[1] Z. Bao, A. J. Lovinger and J. Brown, “New Air-Stable n-Channel
Organic Thin Film Transistors” J. Am. Chem. Soc. 120, 207, 1998.
[2] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar and T. O. Grahami, “N-type organic thin-film transistor with high field-effect mobility based on a N,N8-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative” Appl. Phys. Lett. 80, 2517, 2002.
[3] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes” J. Lumine. 60, 906, 1994.
[4] N. K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti and A. B. Holmes, “Dye-based donor/acceptor solar cells” Sol. Energy. Mater. Sol. Cells 61, 63, 2000.
[5]林士廷, 國立成功大學碩士論文, 2004。
[6] N. S. Sariciftci, D. Braun,C. Zhang, V. I. Srdanov, A. J. Heeger, G.Stucky and F. Wudl, “Semiconducting polymer-buckminsterfullereneheterojunctions: Diodes, photodiodes, and photovoltaic cells” Appl. Phys.Lett. 62, 585, 1993.
[7] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater. 14, 99, 2002.
[8] G. Horowitz, “Organic Field-Effect Transistors” Adv. Mater. 10, 365, 1998.
[9] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film
transistors for large area electronics” Adv. Mater. 14, 99, 2002.
[10] C. R. Newman, C. D. Frisbie, D. A. da S. Filho,Jean-Luc Bre´das, P. C.Ewbank and K. R. Mann, “Introduction to Organic Thin Film Transistorsand Design of n-Channel Organic Semiconductors” Chem. Mater. 16, 4436, 2004.
[11] S. M. Sze, “Semiconductor Devices:Physics and Technology 2nd Edition” John Wiley & Sons, INC, New York, 2001.
[12] Y. Kim, S. A. Choulis, J. Nelson and D. D. C. Bradley, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene” Appl. Phys. Lett. 86, 063502, 2005.
[13]Y. Sun, Y. Liu and D. Zhu, “Advances in organic field-effect transistors” J. Mater. Chem. 15, 53, 2005.
[14]羅吉宗,“薄膜科技與應用”,全華科技圖書股份有限公司, 2004。
[15]曾賢德,果尚志, 物理雙月刊二十五卷五期, 633, 2003。
[16] H. Kissel, U. Muller, C. Walther, W. T. Maselink, “Size distribution in self-assembled InAs quantum dots on GaAs (001) for intermediate InAs coverage” Phys. Rev. B 62, 7213, 2000.
[17] J. Wan, G. L. Jin, Z. M. Jiang, Y. H. Luo, J. L. Liu and Kang L. Wang, “Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si(001)” Appl. Phys. Lett. 78, 1763, 2001.
[18]王潔瑩,中原大學碩士論文, 2004。
[19]行政院國家科學委員會專題研究計畫,離子植入改質之CrN 硬質薄膜在半導體封裝模具之應用研究。
[20]陳儒賢,“不同介電材料之表面能對pentacene複晶薄膜所產生之應力
的研究”,國立成功大學碩士論文, 2006。
[21] S. Y. Yang, K. Shin, C. E. Park, “The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics” Adv. Funct. Mater. 15, 1806, 2005.
[22] S. Tatemichi, M. Ichikawa, T. Koyama and Y. Taniguchi, “High mobility n-type thin-film transistors based on N,N-ditridecyl perylene diimide with thermal treatments” Appl. Phys. Lett. 89, 112108, 2006.
[23] T. Yasuda, T. Goto, K. Fujita and T. Tsutsui, “Ambipolar Carrier Transport in Polycrystalline Pentacene Thin-Film Transistors” Mol. Cryst. Liq. Cryst. 444, 219, 2006.
[24] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. S. Filho, J.-L. Bre´das, L. L. Miller, K. R. Mann and C. D. Frisbie, “Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature” J. Phys. Chem. 108, 19281, 2004.