簡易檢索 / 詳目顯示

研究生: 林育右
Lin, Yu-Yu
論文名稱: 以化學還原法合成導電性銅奈米微粉之研究
Study on Synthesis of Conductive Copper Nanoparticles by Chemical Reduction Method
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 143
中文關鍵詞: 核殼型化學還原法奈米
外文關鍵詞: core-shell, chemical reduction, Cu, nano
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係利用化學還原法來合成奈米級銅微粉。研究中以硫酸銅為前驅物,探討前驅鹽濃度、還原劑添加量、保護劑種類及添加量、反應溫度、溶劑種類、鹼液的添加等變因對所生成銅微粉之晶態、粒徑大小、粒徑分佈及UV/Vis吸收等特性之影響。此外,亦合成銅銀微粉,將所得之金屬微粉摻入PVA膜中,並進行導電性之量測,以期瞭解銅微粉粒徑及添加量對PVA膜導電性之影響。

    實驗結果顯示,以聯胺為還原劑,PVA和PVP為保護劑,可製備出面心立方晶系(f.c.c.)、粒徑3~80 nm之純銅微粉。隨著保護劑比例、前驅鹽濃度之增加,所得粒徑有縮小之趨勢。而隨著還原劑比例、反應溫度之增高,微粉粒徑會隨之增大。由IR和XAS的分析結果發現,PVA與銅之作用過於微弱因而保護效果不彰,而PVP則對銅粒子有明顯之保護作用。

    以乙醇/水為溶劑之系統中,以PVP為保護劑時,所得粒徑(9nm)明顯較相同條件下水溶液系統中所得之粒徑(4 nm)大。此乃由於乙醇之添加會破壞溶液中PVP與銅微粒之作用,而造成保護效果減弱,因此所得粒徑增大。但無保護劑之情況下,則乙醇/水溶液系統所得之粒徑(51 nm)較水溶液系統中所得之粒徑(109 nm)為小,且隨著乙醇比例之提高,所得微粒中之氧化銅量越多。若加入NH4OH或NaOH等鹼液,並未能降低聯胺之用量,但在無保護劑之情況下,銅微粉之粒徑可控制在15nm以下。

    以逐步還原法可合成核殼型銅銀(Cu core/Ag shell)微粉。由UV/Vis光譜分析可知,除411.7nm處為銀之吸收峰外,509.6nm處之肩部吸收為核殼型銅銀結構之特徵。當銅/銀莫耳比為1:4.83時,所製備之核殼型銅銀微粉粒徑約11nm,而銅核之粒徑為5nm。

    導電性量測結果顯示,以粒徑17 nm銅微粉混摻之PVA複合膠膜,當銅粉添加量增加至0.2 wt%時,其導電度有巨幅躍升。當固定銅微粉混摻量為1%,改變不同的銅微粉粒徑時,發現粒徑愈小,導電度愈高。以銀微粉混摻PVA複合膠膜時,其導電度躍升點(0.2wt%)與混摻銅微粉時相同。以核殼型銅銀微粉混摻PVA複合膠膜之躍升點(0.1wt%),較混摻銅或銀微粉都較低。此顯示核殼型銅銀微粉之混摻效果較佳。由TEM分析結果推測,可能係水洗乾燥後之銅銀微粉在PVA膠膜中之分散性較佳所致。

    In this work, Cu nanoparticles were obtained by the chemical reduction of copper sulfate with hydrazine at room temperature. Polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were used as the protecting agents (PA). The influences of synthesis parameters, including copper sulfate concentration, [N2H4]/[Cu2+] ratio, [PA]/[Cu2+] ratio, solvent, atmosphere, temperature, and the addition of alkali on the resultant Cu nanoparticles were investigated. The shape, crystalline structure, particle size and particle size distribution of the as-prepared particles were characterized by TEM, XRD, HRAEM, and UV/Vis spectra analyses.
    The results showed that the f.c.c. structured Cu nanoparticles sized ranging from 3 to 80 nm can be obtained in the presence of PA. The particle size was decreased with increasing the CuSO4 concentration and the [PA]/[Cu2+] ratio. On the contrary, the particle size was increased with the increase of [N2H4]/[Cu2+] ratio and temperature. According to the analyses of IR and XAS, it was found that Cu nanoparticles can not be efficiently protected by PVA due to their weak interaction. However, the Strong interaction of Cu with PVP caused the decreasing in the particle size of Cu nanoparticles.
    In the case of ethanol/water as solvent, and with the presence of PVP, the resulting size (9nm) of Cu nanoparticles was obviously larger than that in the aqueous solution (4nm). This could be inferred that the presence of ethanol would weaken the interaction between PVP and Cu nanoparticles, which resulted in the increase of particle size. Whereas, the particle size (51nm) was smaller than that in the aqueous solution (109nm) in the absence of protecting agent. Furthermore, from the result of XRD analysis, trace CuO and Cu2O were found in the products at high [ethanol]/[H2O] ratio.
    When NH4OH and NaOH were used as the alkaline solutions, although the [N2H4]/[Cu2+] ratio could not be reduced, the Cu nanoparticles with size smaller than 15nm could be obtained without protecting agent.
    The Cu-core/Ag-shell nanoparticles had also been synthesized by successive chemical reduction method. The core-shell structure of the as-synthesized Cu/Ag nanoparticles could be confirmed by the UV/Vis absorption spectra. When the molar ratio of Cu/Ag was 1:4.83, the particle size of obtained Cu- core/Ag-shell nanoparticles was about 11nm, and that of Cu cores was about 5nm.
    Metal doped PVA films, including Cu-PVA, Ag-PVA, and Cu/Ag-PVA films, were used to measure the conductivity. The result showed that for Cu-PVA and Ag-PVA films, as the dosage of Cu nanoparticles was increased up to 0.2wt%, the conductivity was risen dramatically. Besides, the conductivity was increased with decreasing the particle size. However, the dosage of abrupt rise was about 0.1wt% for Cu/Ag-PVA film, which was smaller than that for others. This was probably because the Cu/Ag nanoparticles were relatively well-dispersed in the PVA films.

    中文摘要 I 英文摘要 III 總目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1奈米科技發展現況1 1.2金屬奈米粒子簡介1 1.2.2單金屬奈米粒子簡介 2 1.2.2. 殼核型奈米粒子之簡介 2 1.3金屬奈米粒子製備方法 3 1.3.1金屬奈米粒子製備方法3 1.3.2殼核型奈米粒子之製備4 1.4銅奈米粒子製備方法 4 1.5銅奈米粒子的應用 6 1.6研究目的 7 第二章 原理 15 2.1化學還原反應之反應原理 15 2.2微粉形成原理 15 2.3 X-ray吸收光譜之原理19 2.3 導電機制 21 第三章 實驗部分 29 3.1藥品 29 3.2分析儀器 29 3.3實驗方法及步驟 30 3.4分析方法 33 第四章 結果與討論42 4.1原子吸收光譜之檢量線 42 4.2 銅奈米微粉製備變因探討 42 4.2.1未加保護劑之系統 42 4.2.2以PVA為保護劑之系統 44 4.2.2.1 PVA添加量之影響 44 4.2.2.2前驅鹽濃度之影響 45 4.2.2.3還原劑比例之影響 46 4.2.2.4反應溫度之影響 46 4.2.3以PVP為保護劑之系統 47 4.2.3.1 PVP添加量之影響 47 4.2.3.2前驅鹽濃度之影響 48 4.2.3.3反應溫度之影響 48 4.2.4 銅微粉生成機制之探討 49 4.2.5 保護機制之探討 50 4.2.5.1 PVA之作用 50 4.2.5.2 PVP之作用 51 4.2.6 溶劑之影響 53 4.2.7 鹼液添加之影響 56 4.2.7.1 不同鹼液之影響57 4.2.7.2 不同鹼液系統中添加保護劑之影響 58 4.3 銅核/銀殼型奈米粒子之製備 59 4.3.1 不同銅銀比例之影響 59 4.3.2 保護劑添加之影響 60 4.4 奈米粒子-PVA複合膜之導電度量測 61 4.4.1銅微粉添加量對導電度之影響 62 4.4.2銀微粉添加量對導電度之影響 62 4.4.3銅核/銀殼微粉添加量對導電度之影響 63 4.4.4銅微粉粒徑對導電度之影響 63 4.4.5不同微粉對導電度影響比較 64 第五章 結論 130 參考文獻 134

    1. 牟中原、陳家俊,“奈米材料研究發展”,科學發展月刊,2000年4月。
    2. 劉祥麟,”台灣奈米科技研究體系之簡介”,物理雙月刊,23(6),599(2001)。
    3. 李世光,孫美芳,”發展微機電系統與奈米技術新興科技的人才培育與發展策略”,科技政策發展報導,2001年11月。
    4. 黃德歡,”改變世界的奈米技術”,瀛舟出版社,2002年,台北
    5. A. Scott, “ BASF takes big steps in small tecnology”, Chemical Week , 45, December 4 , 2002.
    6. J. P. Toennies, “Optical properties of metal clusters”, Springer-Verlag, 1995.
    7. A. S. Edelstein and R. C. Cammarata, “Nanomaterials”, Institute of Physics Publishing, 1996.
    8. N. Ichinose, Y. Ozaki and S. Kashū, “Superfine particle technology”, Springer-Verlag, 1990.
    9. 廖建勛,”奈米材料的發展動態”,化工資訊,12(2),1998年2月。
    10. 賴宏仁,”超微結構的奈米材料”,科學月刊,31(3),2000年3月。
    11. 尹邦躍,張勁燕, “奈米時代”,五南出版社,2001,臺北。
    12. E. F. Knott, J. F. Shaeffer and M. T. Tuley, “Radar Cross Section”, Artech House, Boston, 1993.
    13. 吳漢標,陳翊民,“微波吸收材料性質分析與應用”,工業材料,128,1997年8月。
    14. 陳信宏,“奈米銀微粒之化學合成與應用研究”,國立清華大學碩士論文,2002年。
    15. 李宗銘 ,“異方性導電膠材料技術與應用”,工業材料147期,1999年3月。
    16. 吳國卿,董玉蘭,”奈米粒子的觸媒性質”,化工資訊,13(5),1999年5月。
    17. 魏碧玉,賴明雄,”奈米材料在光學上的應用及其製造法”,工業材料,153期,1999年。
    18. Y . Wang, N. Toshima, “Preparation of Pd-Pt bimetallic colloids with controllablecore/shell structures” J. Phys. Chem. B, 101, 5301-5306 (1997)
    19. J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama “Enhanced optical properties of metal-coated nano -particles”, J. Appl. Phys., 73(3), 1043-1048 (1993)
    20. J. B. Jackson, N. J. Halas “Silver nanoshells: Variations in morphologies and optical properties”, J. Phys. Chem. B, 105, 2743-2746(2001)
    21. S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas “Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions”, Chem. Phys. Lett., 300(1999)
    22. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas “Nano- engineering of optical resonances”, Chem. Phys Lett., 288 (2-4), 243-247 (1998)
    23. S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces”, Langmuir, 14, 5396-5401 (1998)
    24. H. Hofmeister, P. T. Miclea, W. Morke, “Metal nanoparticle coating of oxide nanospheres for core-shell structures”, Part. Part. Syst. Charact., 19, 359-365(2002)
    25. K. Mallik, M. Mandal, N. Pradhan, T. Pal “Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of "core-shell" type structures”, Nano Letters, 1(6), 319-322 (2001)
    26. K. H. Ng, R. M. Penner, “Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation”, J. Electro. Anal. Chem., 522(1), 86-94(2002)
    27. J. H. Gwak, L. Chae, S. J. Kim, M. Lee, “Surface plasmon absorption characteristics and nonlinear optical properties of silver/copper codoped silica thin films”, Nanostruct. Mate.r, 8(8), 1149-1156(1997)
    28. J. Lin, W. L. Zhou, A. Kumbhar, J. Wiemann, J. Y. Fang, E. E. Carpenter, C. J. O'Connor, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self -assembly”, J. Solid State Chem., 159(1), 26-31(2001)
    29. S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West, “Temperature -sensitive polymer-nanoshell composites for photothermally modulated drug delivery”, J Biomed Mater. Res., 5(3), 293-298(2000)
    30. 莊萬發,“超微粒子理論應用”,復漢出版社,1995年,台南。
    31. 蘇品書,“超微粒子材料技術”,復漢出版社,1995年,台南。
    32. 史宗淮,“微粉製程技術簡介”,化工,42(6),28 (1995)。
    33. 王炫仁,“鎳核/金殼及鎳核/銀殼複合奈米粒子之製備”,成功大學化學工程研究所碩士論文,2002。
    34. M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni, R. Keyzer, “Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution”, J. Phys. Chem. B, 102(22), 4310-4321(1998)
    35. J. I. Park, J. Cheon, “Synthesis of "solid solution" and "core-shell" type cobalt-platinum magnetic nanoparticles via transmetalation reactions”, J. Am. Chem. Soc., 123(24), 5743-5746(2001)
    36. A. C. Curtis, D. G. Duff, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland and A. S. Wallace, “Preparation and structural characterization of an unprotected Copper Sol”, J. Phys. Chem., 92, 2270-2275(1998).
    37. H. Hirai, H. Wakabayashi and M. Komiyama, “Preparation of polymer-protected colloidal dispersions of copper”, Bull. Chem. Soc. Jpn., 59, 367-372(1986).
    38. H. H. Huang, F. Q. Yan, Y. M. Kek, C. H. Chew, G. Q. Xu, W. Ji, P. S. Oh and S. H. Tang, “Synthesis, characterization, and nonlinear optical properties of copper Nanoparticles”, Langmuir, 13, 172-175(1997)
    39. V. P. Komarov, V. B. Lazarev and I. S. Shaplygin, “Finely divided copper powder”, Inorg. Mater., 84, 669-971(1984).
    40. C. Y. Huang and S. R. Sheen, “Synthesis of nanocrystalline and monodispersed Copper Particles of Uniform Spherical Shape”, Mater. Lett., 30, 357-361(1997).
    41. S. Kapoor, R. Joshi, T. Mukherjee, “Influence of I- anions on the formation and stabilization of copper nanoparticles”, Chem. Phys. Lett., 354(5-6), 443-448 (2002)
    42. A. M. L. Jackelen, M. Jungbauer, G. N. Glavee, “Nanoscale materials synthesis. 1. Solvent effects on hydridoborate reduction of copper ions”, Langmuir, 15 (7), 2322-2326(1999)
    43. P. N. Floriano, C. O. Noble, J. M. Schoonmaker; E. D.Poliakoff; R. L. McCarley, “Cu(0) nanoclusters derived from poly (propylene imine) dendrimer complexes of Cu(II)”, J. Am. Chem. Soc., 123(43), 10545-10553(2001)
    44. M. Aslam, G. Gopakumar, T. L. Shoba, I. S. Mulla, K. Vijayamohanan, S. K. Kulkarni, J. Urban, W. Vogel, “Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: Preparation, structure, and insulating-to-metallic transition”, J. Colloid. Interf. Sci., 255 (1), 79-90(2002)
    45. W. P. Hsu, R. Yu and E. Matijević, “Preparation and characterization of uniform particles of pure and coated metallic copper”, Powder Technology, 63, 265-275(1990).
    46. R. S. Mamoory, G. P. Demopoulos and R. A. L. Drew, “Preparation of fine copper powders from organic media by reaction with hydrogen under pressure: part II. the kinetics of particle nucleation, growth and dispersion”, Metal. and Mate. Trans. B, 27B, 585-594(1996).
    47. P. Chen, X. Wu, J. Lin and K. L. Tan, “Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template”, J. Phys. Chem. B, 103(22), 4559-4561(1999).
    48. I. Lisiecki and M. P. Pileni, “Synthesis of copper metallic clusters using reverse micelles as microreactors”, J. Am. Chem. Soc., 115, 3887-3896(1993).
    49. M. P. Pileni and I. Lisiecki, “Nanometer metallic copper particle synthesis in reverse micelles”, Colloids Surf. A, 80, 63-68(1993).
    50. M. P. Pileni, T. G. Krzywicki, J. Tanori, A. Filankembo and J. C. Dedieu, “Template design of microreactors with colloidal assemblies: control the growth of copper metal rods”, Langmuir, 14, 7359-7363(1998).
    51. Q. Limin, M. Jiming, S. Julin, “Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions”, J. Colloid. Interf. Sci., 186(2), 498-500(1997)
    52. S. Qiu, J. Dong, G. Chen, “Preparation of Cu nanoparticles from water-in-oil microemulsions”, J. Colloid Interf. Sci., 216(2), 230-234 (1999)
    53. S. S. Joshi, S. F. Patil, V. Iyer and S. Mahumuni, “Radiation induced synthesis and characterization of copper Nanoparticles”, NanoStruct. Mater., 10(7), 1135-1144(1998).
    54. A. Henglein, “Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2-“, J. Phys. Chem. B., 104(6), 1206-1211(2000)
    55. S. Kapoor, D. K. Palit and T. Mukherjee, “Preparation, charac- terization and surface modification of Cu metal nanoparticles”, Chem. Phys. Lett., 355, 383-387(2002).
    56. Y. H. Yeh, M. S. Yeh, Y. P. Lee and C. S. Yeh, “Formation of Cu nanoparticles from CuO powder by Laser ablation in 2-propanol”, Chem. Lett., 1183-1184(1998).
    57. M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh and C. S. Yeh, “Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-Propanol”, J. Phys. Chem. B, 103, 6851 -6857(1999).
    58. N. A. Dhas, C. P. Raj and A. Gedanken, “Synthesis, characterization, and properties of metallic copper nanoparticles”, Chem. of Mater., 10, 1446-1452(1998).
    59. D. W. Lee, G. H. Ha, B. K. Kim, ”Synthesis of Cu-Al2O3 nano- composite powder”, Scripta materials, 44, 2137-2140(2001).
    60. A. G. Nasibulin, E. I. Kauppinen, D. P. Brown, J.K. Jokiniemi, “Nano- particle formation via copper (II) acetylacetonate vapor decomposition in the presence of hydrogen and water”, J. Phys. Chem. B, 105(45), 11067 -11075(2001)
    61. 姚品全,”淺談銅觸媒”,觸媒與製程,8(2),47-59(2000)。
    62. A. Dandekar, M. A. Vannice, “Decomposition and reduction of N2O over copper catalysts”, Appl. Catal. B: Environmental, 22(3), 179-200(1999)
    63. Y. W. Suh, S. H. Moon, H. K. Rhee , “Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2”, Catal. Today, 63(2-4), 447-452(2000).
    64. R. M. Rioux, M. A.Vannice, “Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts”, J. Catal., 216(1-2), 362-376(2003)
    65. Z. Wang, W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, Inter. J. Hydrogen Energy, 28(2), 151-158(2002)
    66. N. Floquet, S. Yilmaz, J. L. Falconer, “Interaction of copper catalysts and Si(100) for the direct synthesis of methylchlorosilanes”, J.of Catal., 148(1), 348-368 (1994)
    67. L. M. Hair, L. Owens, T. Tillotson, Wong J., Thomas G.J., Medlin D.L., Froba M., “Local, nano- and micro-structures of mixed metal oxide aerogels for catalyst applications”, J. Non-Crystalline Solids, 186, 168-176(1995)
    68. F. E. Kruis, H. Fissan and A. Peled, “Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications”, J. Aero. Sci., 29(5/6), 511-535(1998).
    69. X. Liu, W. Cai, and H. Bi, “Optical absorption of copper nanoparticles dispersed within pores of monolithic mesoporous silica”, J. Mates Res., 17(5), 1125-1128(2002)
    70. R. Serna, J. M. Ballesteros, J. Solis, C.N. Afonso, Osborne DH, Haglund RF, Petford-Long AK, “Laser-induced modification of the nonlinear optical response of laser-deposited Cu : Al2O3 nanocomposite films”, Thin Solid Films, 318 (1-2), 96-99(1998)
    71. J. H. Gwak, L. Chae, S. J. Kim, M. Lee, “Surface plasmon absorption character- ristics and nonlinear optical properties of silver/copper codoped silica thin films”, Nanostruct. Mater., 8(8), 1149-1156(1997)
    72. 黃忠良,”精密陶瓷材料概念”,復漢出版社,2001年,台南。
    73. J. W. Mullin, “Crystallization”, Butterworth-Heinemann, Boston, 1993.
    74. 黃琬婷,”二氧化鈰超微粉之製備及其特性之研究”,成功大學化學工程研究所碩士論文,2000。
    75. B. Lewis, “The growth of crystals of low supersaturation. I. Theory”, J. Crystal Growth, 1974, 21, 29-39.
    76. B. Lewis, “The growth of crystals of low supersaturation. II. comparison with experiment”, J. Crystal Growth, 1974, 21, 40-50.
    77. G. H. Nancollas, “The growth of crystals in soultion”, Advances Colloid and interf. Sci., 1979, 10, 215-252.
    78. 何文祥, “X光光譜分析之原理與應用”,國立編譯館,1983一月。
    79. 李志甫,何玲文,曹君曼,“X-射線法”,高立圖書有限公司,2001年一月。
    80. 駱明仁,“尖晶石型態鋰錳氧吸附劑之製備、特性及其吸附-脫附行為之研究”,成功大學化學工程研究所碩士論文,2002。
    81. 李志甫,“X光吸收光譜術在觸媒特性分析上的應用”,化學,53(3),1995年9月。
    82. 陳則良,“X光吸收光譜對BaTiO3/SrTiO3超晶格之研究”, 淡江大學物理學系研究所碩士論文,2001。
    83. 林建榮,“燃煤飛灰去除水中污染物行為之研究”, 成功大學環境工程研究所博士論文,2000。
    84. 林俊吉,“砷化鎵單晶:三光複繞射之繞射異常精細結構”, 國立清華大學物理學研究所碩士論文,2000。
    85. D. C. Koningsberger and R. Prins., “X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES”, Wiley, New York, 1988.
    86. B. K. Teo, D.C. Joy., “EXAFS spectroscopy, techniques and applications”, Plenum Press, New York, 1981.
    87. 楊宗燁、林鴻明、吳泉毅、林中魁, “奈米材料之X光吸收光譜檢測與分析”, 物理雙月刊,23(6),2001年12月。
    88. 崔古鼎,“同步輻射中心簡介”,物理雙月刊,20(5),1998年10月。
    89. 李宗銘,“異方性導電膠材料技術與應用”, 工業材料,147,1999年3月。
    90. 李巡天、李宗銘, “異方性導電膠材料技術及其在覆晶構裝上的技術探討”, 工業材料,175,2001年7月。
    91. 呂能興,“單向導電膠”,材料與社會,67,1992年7月。
    92. 張德洲,”導電性高分子”,化工技術,1(2),67-73(1993)。
    93. Ye. P. Mamunya, V. V. Davydenko, P. Pissis and E. V. Lebedev, “Electrical and thermal conductivity of polymers filled with metal powders”, European Polymer Journal, 38, 1887-1879(2002).
    94. H. S. Katz and J. V. Milewski (ed.), Handbook of Fillers and Reinforcements for Plastics, New York, Van Nostrand Reinhold, 1978.
    95. R. K. McGeary, J. Am. Ceram. Soc., 144, 513-522(1961).
    96. Y. Fu, J. Liu and M. Willander, “Conduction modeling of a conductive adhesive with bimodal distribution of conducting element”, Inter. J. Adhesion & Adhesives, 19, 281-286(1999).
    97. M. Q. Zhang, J. R. Xu, H. M. Zeng, Q. Huo, Z.Y. Zhang and F. C. Yun, “Fractal approach to the critical filler volume fraction of an electrically conductive polymer composite”, J. Mater. Sci., 30, 4226-4232(1995).
    98. P. N. Gupta, K. P. Singh, “Characterization of H3PO4 based PVA complex system”, Solid State Ionics, 86(8), 319-323 (1996)
    99. M. Song, H. M. Ma, Y. X. Huang, S. C. Liang, “Determination of poly (vinyl alcohol) by adsorptive stripping voltammetry based on its copper(II) complex”, Anal. Chim. Acta., 338(1-2), 103-108(1997)
    100. H. Yokoi, S. Kawata, and M. Iwaizumi, “Interaction modes between heavy metal ions and water-soluble polymers. 1. Spectro- scopic and magnetic reexamination of the aqueous solutions of cupric ions and poly(vinyl alcohol)”, J. Am. Chem. Soc.,108 ,3358-3361(1986)
    101. Z. T. Zhang, B. Zhao, L. M. Hu, “PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes”, J. Solid State Chem., 121(1), 105-110(1996)
    102. G. Akerlof, “Dielectric constants of some organic solvent-water mixtures at various Temperature”, J. Am. Chem. Soc., 54(11), 4125 -4139(1932)
    103. A. Henglein, M. Giersig, “Formation of colloidal silver nanoparticles: Capping action of citrate”, J. Phys. Chem. B, 103(44), 9533–9539 (1999)
    104. A. Henglein, M. Giersig, “Reduction of Pt(II) by H-2: effects of citrate and NaOH and reaction mechanism”, J. Phys. Chem. B, 104(29), 6767 -6772 (2000)

    下載圖示 校內:2004-08-06公開
    校外:2005-08-06公開
    QR CODE