| 研究生: |
李威廷 Lee, Wei-Ting |
|---|---|
| 論文名稱: |
氧化鐵奈米粒子阻止艱難梭狀桿菌之孢子發芽並減緩艱難梭狀桿菌: 體外及活體系統之機制與療效探討 Iron Oxide Nanocrystals Prohibit Clostridium difficile Spore Germination and Attenuate Intestinal Inflammation: an in vitro and in vivo Mechanistic and Therapeutic Investigation |
| 指導教授: |
蔡佩珍
Tsai, Pei-Jane 謝達斌 Shieh, Dar-Bin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 艱難梭狀桿菌感染 、胞子 、奈米粒子 、活體實驗 |
| 外文關鍵詞: | Clostridium difficile Infection, Spores, Nanoparticles, in vivo test |
| 相關次數: | 點閱:131 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
艱難梭狀桿菌為可形成內孢子細菌,導致世界各地與住院相關的腹瀉,並也是個嚴重的重複感染原。其感染之臨床控制仍然未臻理想,主因在該菌體的孢子型態能對抗許多化學藥劑及物理性途徑之傷害。另一方面,已有相當多類型的奈米粒子被證明具有抗微生物功能,甚至能對付多重抗藥性細菌。然而大多該類型研究鮮少論及奈米粒子對宿主細胞的生物相容性及對正常微生物叢的影響。我們的研究發現隨著四氧化三鐵奈米粒子濃度愈高,其抑制艱難梭狀桿菌發芽的效果愈佳。其效果與次氯酸鈉之正向對照組相近。藉由管餵方式給予小鼠艱難梭狀桿菌孢子所建立的動物感染模式研究顯示受感染之對照組小鼠較經過四氧化三鐵奈米粒子治療實驗組小鼠,其腸道發炎嚴重度高約三倍。組織病理分析結果顯示對照組感染鼠之大腸組織有大量嗜中性白血球浸潤,而經四氧化三鐵奈米粒子處理過的實驗組則有顯著較少嗜中性白血球。在四氧化三鐵奈米粒子導致的艱難梭狀桿菌孢子萌發抑制機制方面的探討,減少吡啶二羧酸從胞子釋放而阻擋了孢子後續之萌發程序。經活體實驗結果證明,四氧化三鐵奈米粒子在沒有明顯造成小鼠治療副作用的負面影響下,具有顯著減緩艱難梭狀桿菌引起的發炎反應之療效。而由體外實驗則證明,此奈米粒子亦能延緩艱難梭狀桿菌形成孢子的時間。綜合整個研究結果,我們歸結四氧化三鐵奈米粒子具有發展為預防及治療艱難梭狀桿菌感染之全新型製劑的潛力。
Clostridium difficile, a spore forming bacterium, is the leading cause of hospital-acquired diarrhea and serious re-emerging pathogen worldwide. Clinical management of C. difficile infection is still far from satisfactory as its spores are resistant to many chemical and physical treatments. Certain types of nanoparticles exhibit anti-microbial efficacy even in multi-drug resistance bacteria. However, only few of these studies addressed the biocompatibility issues to the host and the normal flora. This study identified an octahedron iron oxide nanocrystal, Fe3-δO4, capable of inhibiting spore germination close to that of the sodium hypochlorite. In a C. difficile infection animal model, the inflammatory level tripled in mice with colonic C. difficile spores compared to the group with the Fe3-δO4 nanoparticles co-treatment. Histopathological analysis showed an intense neutrophil accumulation in the colon tissue of the negative control-group mice but not in the nanoparticle-treated mice. The Fe3-δO4 nanoparticles reduced the dipicolinic acid release thus effectively block spores germination. These results suggested that the Fe3-δO4 nanoparticles, which had no apparent side effects in vivo, were efficacious inhibitors of C. difficile spore germination. In addition, the Fe3-δO4 nanoparticles attenuated C. difficile induced inflammation in mice and delayed sporulation in the in vitro test. Therefore, the Fe3-δO4 nanoparticles possess great potential as a new class of effective C. difficile prophylaxis and therapeutic strategy.
Abt, M. C., P. T. McKenney and E. G. Pamer (2016). "Clostridium difficile colitis: pathogenesis and host defence." Nature Reviews Microbiology 14(10): 609-620.
Aguilar, C. A. H., A. B. P. Jiménez, A. R. Silva, N. Kaur, P. Thangarasu, J. M. V. Ramos and N. Singh (2015). "Organic-Inorganic Hybrid Nanoparticles for Bacterial Inhibition: Synthesis and Characterization of Doped and Undoped ONPs with Ag/Au NPs." Molecules 20(4): 6002-6021.
Al-Jashaami, L. S. and H. L. DuPont (2016). "Management of Clostridium difficile Infection." Gastroenterology & Hepatology 12(10): 609.
Amin, M. L., J. Y. Joo, D. K. Yi and S. S. A. An (2015). "Surface modification and local orientations of surface molecules in nanotherapeutics." Journal of Controlled Release 207: 131-142.
Arakha, M., S. Pal, D. Samantarrai, T. K. Panigrahi, B. C. Mallick, K. Pramanik, B. Mallick and S. Jha (2015). "Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface." Scientific reports 5:14813
Arami, H., A. Khandhar, D. Liggitt and K. M. Krishnan (2015). "In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles." Chemical Society Reviews 44(23): 8576-8607.
Ananthakrishnan, A. N. (2010). "Clostridium difficile infection: epidemiology, risk factors and management." Nature Reviews Gastroenterology and Hepatology 8(1): 17-26.
Arnesen, L. P. S., A. Fagerlund and P. E. Granum (2008). "From soil to gut: Bacillus cereus and its food poisoning toxins." FEMS microbiology reviews 32(4): 579-606.
Bakken, J. S., T. Borody, L. J. Brandt, J. V. Brill, D. C. Demarco, M. A. Franzos, C. Kelly, A. Khoruts, T. Louie and L. P. Martinelli (2011). "Treating Clostridium difficile infection with fecal microbiota transplantation." Clinical Gastroenterology and Hepatology 9(12): 1044-1049.
Balkundi, S. S., N. G. Veerabadran, D. M. Eby, G. R. Johnson and Y. M. Lvov (2009). "Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells†." Langmuir 25(24): 14011-14016.
Barbut, F. (2009). "Comparison of the efficacy of a hydrogen peroxide dry‐mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores." Infection Control and Hospital Epidemiology 30(6): 507-514.
Binkley, C. E., S. Cinti, D. M. Simeone and L. M. Colletti (2002). "Bacillus anthracis as an agent of bioterrorism: a review emphasizing surgical treatment." Annals of surgery 236(1): 9-16.
Burns, D. A., J. T. Heap and N. P. Minton (2010). "Clostridium difficile spore germination: an update." Research in microbiology 161(9): 730-734.
Burns, D. A. and N. P. Minton (2011). "Sporulation studies in Clostridium difficile." Journal of microbiological methods 87(2): 133-138.
Carroll, K. J., D. M. Hudgins, S. Spurgeon, K. M. Kemner, B. Mishra, M. I. Boyanov, L. W. Brown III, M. L. Taheri and E. E. Carpenter (2010). "One-pot aqueous synthesis of Fe and Ag core/shell nanoparticles." Chemistry of Materials 22(23): 6291-6296.
Cavassin, E. D., L. F. P. de Figueiredo, J. P. Otoch, M. M. Seckler, R. A. de Oliveira, F. F. Franco, V. S. Marangoni, V. Zucolotto, A. S. S. Levin and S. F. Costa (2015). "Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria." Journal of nanobiotechnology 13(1): 1.
Chong, P. M., T. Lynch, S. McCorrister, P. Kibsey, M. Miller, D. Gravel, G. R. Westmacott, M. R. Mulvey and C. N. I. S. Program (2014). "Proteomic Analysis of a NAP1 Clostridium difficile Clinical Isolate Resistant to Metronidazole." PloS one 9(1): e82622.
Clements, A. C., R. J. S. Magalhães, A. J. Tatem, D. L. Paterson and T. V. Riley (2010). "Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread." The Lancet infectious diseases 10(6): 395-404.
De Jong, W. H. and P. J. Borm (2008). "Drug delivery and nanoparticles: applications and hazards." International journal of nanomedicine 3(2): 133.
Das, S. K. and E. Marsili (2011). Bioinspired metal nanoparticle: synthesis, properties and application, INTECH Open Access Publisher.
Donnelly, M. L., W. Li, Y. q. Li, L. Hinkel, P. Setlow and A. Shen (2017). "A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination." mBio 8(1): e02085-02016.
Egan, K., D. Field, M. C. Rea, R. P. Ross, C. Hill and P. D. Cotter (2016). "Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?" Frontiers in microbiology 7.
Fimlaid, K. A., J. P. Bond, K. C. Schutz, E. E. Putnam, J. M. Leung, T. D. Lawley and A. Shen (2013). "Global analysis of the sporulation pathway of Clostridium difficile." PLoS Genet 9(8): e1003660.
Fimlaid, K. A., O. Jensen, M. L. Donnelly, M. B. Francis, J. A. Sorg and A. Shen (2015). "Identification of a novel lipoprotein regulator of Clostridium difficile spore germination." PLoS Pathog 11(10): e1005239.
Forier, K., K. Raemdonck, S. C. De Smedt, J. Demeester, T. Coenye and K. Braeckmans (2014). "Lipid and polymer nanoparticles for drug delivery to bacterial biofilms." Journal of Controlled Release 190: 607-623.
Francis, M. B., C. A. Allen, R. Shrestha and J. A. Sorg (2013). "Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection." PLoS Pathog 9(5): e1003356.
Francis, M. B., C. A. Allen and J. A. Sorg (2015). "Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination." Journal of bacteriology 197(14): 2276-2283.
Gao, W., J. M. Chan and O. C. Farokhzad (2010). "pH-responsive nanoparticles for drug delivery." Molecular pharmaceutics 7(6): 1913-1920.
Gerhardt, P. and S. H. Black (1961). "Permeability of bacterial spores II. Molecular variables affecting solute permeation." Journal of bacteriology 82(5): 750-760.
Gerding, D. N., C. A. Muto and R. C. Owens (2008). "Measures to control and prevent Clostridium difficile infection." Clinical Infectious Diseases 46(Supplement 1): S43-S49.
Gopinath, P. M., A. Ranjani, D. Dhanasekaran, N. Thajuddin, G. Archunan, M. A. Akbarsha, B. Gulyás and P. Padmanabhan (2016). "Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time." Scientific Reports 6: 34058
Gould, L. H. and B. Limbago (2010). "Clostridium difficile in food and domestic animals: a new foodborne pathogen?" Clinical Infectious Diseases 51(5): 577-582.
Govind, R. and B. Dupuy (2012). "Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE." PLoS Pathogens 8(6): e1002727.
Grover, N., I. V. Borkar, C. Z. Dinu, R. S. Kane and J. S. Dordick (2012). "Laccase-and chloroperoxidase-nanotube paint composites with bactericidal and sporicidal activity." Enzyme and microbial technology 50(6): 271-279.
Hajipour, M. J., K. M. Fromm, A. Akbar Ashkarran, D. Jimenez de Aberasturi, I. R. d. Larramendi, T. Rojo, V. Serpooshan, W. J. Parak and M. Mahmoudi (2012). "Antibacterial properties of nanoparticles." Trends in biotechnology 30(10): 499-511.
Hamal, D. B., J. A. Haggstrom, G. L. Marchin, M. A. Ikenberry, K. Hohn and K. J. Klabunde (2009). "A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur." Langmuir 26(4): 2805-2810.
Hedge, D. D., J. D. Strain, J. R. Heins and D. K. Farver (2008). "New advances in the treatment of Clostridium difficile infection (CDI)." Therapeutics and clinical risk management 4(5): 949.
Hensgens, M. P., E. C. Keessen, M. M. Squire, T. V. Riley, M. G. Koene, E. de Boer, L. J. Lipman and E. J. Kuijper (2012). "Clostridium difficile infection in the community: a zoonotic disease?" Clinical Microbiology and Infection 18(7): 635-645.
Hirota, S. A., V. Iablokov, S. E. Tulk, L. P. Schenck, H. Becker, J. Nguyen, S. Al Bashir, T. C. Dingle, A. Laing and J. Liu (2012). "Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure." Infection and immunity 80(12): 4474-4484.
Hoet, P. H., I. Brüske-Hohlfeld and O. V. Salata (2004). "Nanoparticles–known and unknown health risks." Journal of nanobiotechnology 2(1): 12.
Howerton, A., M. Patra and E. Abel-Santos (2013). "A new strategy for the prevention of Clostridium difficile infection." Journal of Infectious Diseases: jit068.
Howerton, A., N. Ramirez and E. Abel-Santos (2011). "Mapping interactions between germinants and Clostridium difficile spores." Journal of bacteriology 193(1): 274-282.
Huang, C. C., K. Y. Chuang, C. P. Chou, M. T. Wu, H. S. Sheu, D. B. Shieh, C. Y. Tsai, C. H. Su, H. Y. Lei and C. S. Yeh (2011). "Size-control synthesis of structure deficient truncated octahedral Fe3− δO4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents." Journal of Materials Chemistry 21(20): 7472-7479.
Hung, Y.-P., P.-H. Chou, Y.-H. Chen, H.-J. Lin, Y.-H. Liu, H.-W. Tsai, J.-C. Lee, W.-C. Ko and P.-J. Tsai (2015). "Proton pump inhibitor exposure aggravates Clostridium difficile colitis: evidences from a mouse model." Journal of Infectious Diseases: jiv184.
Iravani, S., H. Korbekandi, S. Mirmohammadi and B. Zolfaghari (2014). "Synthesis of silver nanoparticles: chemical, physical and biological methods." Research in pharmaceutical sciences 9(6): 385-406.
Jandhyala, S. M., R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala and D. N. Reddy (2015). "Role of the normal gut microbiota." World journal of gastroenterology: WJG 21(29): 8787.
Jones, N., B. Ray, K. T. Ranjit and A. C. Manna (2008). "Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms." FEMS microbiology letters 279(1): 71-76.
Jump, R. L., M. J. Pultz and C. J. Donskey (2007). "Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?" Antimicrobial agents and chemotherapy 51(8): 2883-2887.
Kango, S., S. Kalia, A. Celli, J. Njuguna, Y. Habibi and R. Kumar (2013). "Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review." Progress in Polymer Science 38(8): 1232-1261.
Klein, G. (2003). "Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract." International Journal of Food Microbiology 88(2): 123-131.
Koga, H., T. Kitaoka and H. Wariishi (2009). "In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications." Journal of Materials Chemistry 19(15): 2135-2140.
Kubota, H., T. Sakai, A. Gawad, H. Makino, T. Akiyama, E. Ishikawa and K. Oishi (2014). "Development of TaqMan-based quantitative PCR for sensitive and selective detection of toxigenic Clostridium difficile in human stools." PloS one 9(10): e111684.
Kumar, A., A. K. Pandey, S. S. Singh, R. Shanker and A. Dhawan (2011). "Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli." Free Radical Biology and Medicine 51(10): 1872-1881.
Laurent, S., D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R. N. Muller (2008). "Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications." Chemical reviews 108(6): 2064-2110.
Lawley, T. D., S. Clare, L. J. Deakin, D. Goulding, J. L. Yen, C. Raisen, C. Brandt, J. Lovell, F. Cooke and T. G. Clark (2010). "Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens." Applied and environmental microbiology 76(20): 6895-6900.
Lawley, T. D., S. Clare, A. W. Walker, D. Goulding, R. A. Stabler, N. Croucher, P. Mastroeni, P. Scott, C. Raisen and L. Mottram (2009). "Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts." Infection and immunity 77(9): 3661-3669.
Lawley, T. D., S. Clare, A. W. Walker, M. D. Stares, T. R. Connor, C. Raisen, D. Goulding, R. Rad, F. Schreiber and C. Brandt (2012). "Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice." PLoS Pathog 8(10): e1002995.
Lee, C., J. Y. Kim, W. I. Lee, K. L. Nelson, J. Yoon and D. L. Sedlak (2008). "Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli." Environmental science & technology 42(13): 4927-4933.
Lee, N., D. Yoo, D. Ling, M. H. Cho, T. Hyeon and J. Cheon (2015). "Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy." Chemical reviews 115(19): 10637-10689.
Levy, S. B. and B. Marshall (2004). "Antibacterial resistance worldwide: causes, challenges and responses." Nature medicine 10: S122-S129.
Li, T. J., C. C. Huang, P. W. Ruan, K. Y. Chuang, K. J. Huang, D. B. Shieh and C. S. Yeh (2013). " In vivo anti-cancer efficacy of magnetite nanocrystal-based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy." Biomaterials 34(32): 7873-7883.
Lin, J., W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E. Carpenter and C. O'Connor (2001). "Gold-coated iron (Fe@ Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly." Journal of Solid State Chemistry 159(1): 26-31.
Liu, R., J. M. Suárez, B. Weisblum, S. H. Gellman and S. M. McBride (2014). "Synthetic Polymers Active against Clostridium difficile Vegetative Cell Growth and Spore Outgrowth." Journal of the American Chemical Society 136(41): 14498-14504.
Loo, V. G., L. Poirier, M. A. Miller, M. Oughton, M. D. Libman, S. Michaud, A.-M. Bourgault, T. Nguyen, C. Frenette and M. Kelly (2005). "A predominantly clonal multi-institutional outbreak of Clostridium difficile–associated diarrhea with high morbidity and mortality." New England Journal of Medicine 353(23): 2442-2449.
Lövestam, G., H. Rauscher, G. Roebben, B. S. Klüttgen, N. Gibson, J.-P. Putaud and H. Stamm (2010). "Considerations on a definition of nanomaterial for regulatory purposes." Joint Research Centre (JRC) Reference Reports: 80004-80001.
Lyras, D., J. R. O’Connor, P. M. Howarth, S. P. Sambol, G. P. Carter, T. Phumoonna, R. Poon, V. Adams, G. Vedantam and S. Johnson (2009). "Toxin B is essential for virulence of Clostridium difficile." Nature 458(7242): 1176-1179.
Mariat, D., O. Firmesse, F. Levenez, V. Guimarăes, H. Sokol, J. Dore, G. Corthier and J. Furet (2009). "The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age." BMC microbiology 9(1): 1.
Moir, A. and D. A. Smith (1990). "The genetics of bacterial spore germination." Annual Reviews in Microbiology 44(1): 531-553.
Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez and M. J. Yacaman (2005). "The bactericidal effect of silver nanoparticles." Nanotechnology 16(10): 2346.
Mullane, K. (2014). "Fidaxomicin in Clostridium difficile infection: latest evidence and clinical guidance." Therapeutic advances in chronic disease 5(2): 69-84.
Nerandzic, M. M. and C. J. Donskey (2013). "Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin." PLoS One 8(1): e54740.
Owens, R. C., C. J. Donskey, R. P. Gaynes, V. G. Loo and C. A. Muto (2008). "Antimicrobial-associated risk factors for Clostridium difficile infection." Clinical Infectious Diseases 46(Supplement 1): S19-S31.
Papatheodorou, P., C. Zamboglou, S. Genisyuerek, G. Guttenberg and K. Aktories (2010). "Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis." PLoS One 5(5): e10673.
Paredes-Sabja, D., A. Shen and J. A. Sorg (2014). "Clostridium difficile spore biology: sporulation, germination, and spore structural proteins." Trends in microbiology 22(7): 406-416.
Pedersen, R., A. D. Andersen, L. Mølbak, J. Stagsted and M. Boye (2013). "Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs." BMC microbiology 13(1): 1.
Parivar, K., F. M. Fard, M. Bayat, S. M. Alavian and M. Motavaf (2016). "Evaluation of Iron Oxide Nanoparticles Toxicity on Liver Cells of BALB/c Rats." Iranian Red Crescent Medical Journal 18(1): e28939
Patra, J. K. and K.-H. Baek (2014). "Green nanobiotechnology: factors affecting synthesis and characterization techniques." Journal of Nanomaterials 2014: 219.
Pelgrift, R. Y. and A. J. Friedman (2013). "Nanotechnology as a therapeutic tool to combat microbial resistance." Advanced drug delivery reviews 65(13): 1803-1815.
Pereira, F. C., L. Saujet, A. R. Tomé, M. Serrano, M. Monot, E. Couture-Tosi, I. Martin-Verstraete, B. Dupuy and A. O. Henriques (2013). "The spore differentiation pathway in the enteric pathogen Clostridium difficile." PLoS Genet 9(10): e1003782.
Pettit, L. J., H. P. Browne, L. Yu, W. K. Smits, R. P. Fagan, L. Barquist, M. J. Martin, D. Goulding, S. H. Duncan and H. J. Flint (2014). "Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism." BMC genomics 15(1): 1.
Pfeifer, G., J. Schirmer, J. Leemhuis, C. Busch, D. K. Meyer, K. Aktories and H. Barth (2003). "Cellular uptake of Clostridium difficile toxin B translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells." Journal of Biological Chemistry 278(45): 44535-44541.
Poutanen, S. M. and A. E. Simor (2004). "Clostridium difficile-associated diarrhea in adults." Canadian Medical Association Journal 171(1): 51-58.
Prucek, R., J. Tuček, M. Kilianová, A. Panáček, L. Kvítek, J. Filip, M. Kolář, K. Tománková and R. Zbořil (2011). "The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles." Biomaterials 32(21): 4704-4713.
Ravikumar, S., R. Gokulakrishnan, K. Selvanathan and S. Selvam (2011). "Antibacterial activity of metal oxide nanoparticles against ophthalmic pathogens." International Journal of Pharmaceutical Research and Development 3(5): 122-127.
Rodriguez-Palacios, A. and J. T. LeJeune (2011). "Moist heat resistance, spore aging, and superdormancy in Clostridium difficile." Applied and environmental microbiology.
Ruhe, F., A. Olling, R. Abromeit, D. Rataj, M. Grieschat, A. Zeug, R. Gerhard and A. Alekov (2017). "Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB." Frontiers in Cellular and Infection Microbiology 7(67): 1-15
Russell, A. (1999). "Bacterial resistance to disinfectants: present knowledge and future problems." Journal of Hospital Infection 43: S57-S68.
Rutala, W. A., M. F. Gergen, B. M. Tande and D. J. Weber (2013). "Rapid hospital room decontamination using ultraviolet (UV) light with a nanostructured UV-reflective wall coating." Infection Control & Hospital Epidemiology 34(05): 527-529.
Santra, S., C. Kaittanis, J. Grimm and J. M. Perez (2009). "Drug/Dye‐Loaded, Multifunctional Iron Oxide Nanoparticles for Combined Targeted Cancer Therapy and Dual Optical/Magnetic Resonance Imaging." small 5(16): 1862-1868.
Sebaihia, M., B. W. Wren, P. Mullany, N. F. Fairweather, N. Minton, R. Stabler, N. R. Thomson, A. P. Roberts, A. M. Cerdeño-Tárraga and H. Wang (2006). "The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome." Nature genetics 38(7): 779-786.
Setlow, P. (2007). "I will survive: DNA protection in bacterial spores." Trends in microbiology 15(4): 172-180.
Shapey, S., K. Machin, K. Levi and T. Boswell (2008). "Activity of a dry mist hydrogen peroxide system against environmental Clostridium difficile contamination in elderly care wards." Journal of Hospital Infection 70(2): 136-141.
Shen, A. (2015). "A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination." PLoS Pathog 11(10): e1005157.
Sorg, J. A. and A. L. Sonenshein (2009). "Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination." Journal of bacteriology 191(3): 1115-1117.
Sorg, J. A. and A. L. Sonenshein (2010). "Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid." Journal of bacteriology 192(19): 4983-4990.
Staley, C., C. R. Kelly, L. J. Brandt, A. Khoruts and M. J. Sadowsky (2016). "Complete Microbiota Engraftment Is Not Essential for Recovery from Recurrent Clostridium difficile Infection following Fecal Microbiota Transplantation." mBio 7(6): e01965-01916.
Sun, D. S., J. H. Kau, H. H. Huang, Y. H. Tseng, W. S. Wu and H. H. Chang (2016). "Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax." Nanomaterials 6(12): 237.
Tao, L., J. Zhang, P. Meraner, A. Tovaglieri, X. Wu, R. Gerhard, X. Zhang, W. B. Stallcup, J. Miao and X. He (2016). "Frizzled proteins are colonic epithelial receptors for C. difficile toxin B." Nature 538(7625): 350-355.
Tran, N., A. Mir, D. Mallik, A. Sinha, S. Nayar and T. J. Webster (2010). "Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus." International journal of nanomedicine 5: 277.
Tsai, B. Y., W. C. Ko, T. H. Chen, Y. C. Wu, P. H. Lan, Y. H. Chen, Y. P. Hung and P. J. Tsai (2016). "Zoonotic potential of the Clostridium difficile RT078 family in Taiwan." Anaerobe 41: 125-130.
Vardakas, K. Z., K. A. Polyzos, K. Patouni, P. I. Rafailidis, G. Samonis and M. E. Falagas (2012). "Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence." International journal of antimicrobial agents 40(1): 1-8.
Voelker, R. (2010). "Increased Clostridium difficile virulence demands new treatment approach." JAMA 303(20): 2017-2019.
Wang, G., X. Yi, Y. Q. Li and P. Setlow (2011). "Germination of individual Bacillus subtilis spores with alterations in the GerD and SpoVA proteins, which are important in spore germination." Journal of bacteriology 193(9): 2301-2311.
Wang, R. C., H. Y. Lin, S. J. Chen, Y. F. Lai and M. R. Huang (2009). "Boundary layer-assisted chemical bath deposition of well-aligned ZnO rods on Si by a one-step method." Applied Physics A 96(3): 775-781.
Wexler, H. M. (2007). "Bacteroides: the good, the bad, and the nitty-gritty." Clinical microbiology reviews 20(4): 593-621.
Wilcox, M. H. (2003). "Clostridium difficile infection and pseudomembranous colitis." Best Practice & Research Clinical Gastroenterology 17(3): 475-493.
Wilcox, M. H. and W. N. Fawley (2000). "Hospital disinfectants and spore formation by Clostridium difficile." The Lancet 356(9238): 1324.
Wilson, K. H. and F. Perini (1988). "Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora." Infection and immunity 56(10): 2610-2614.
Wu, W., C. Z. Jiang and V. A. Roy (2016). "Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications." Nanoscale 8(47): 19421-19474.
Wu, Y. N., P. C. Wu, L. X. Yang, K. R. Ratinac, P. Thordarson, K. A. Jahn, D.-H. Chen, D.-B. Shieh and F. Braet (2013). "The anticancer properties of iron core–gold shell nanoparticles in colorectal cancer cells." International journal of nanomedicine 8: 3321.
Xiu, Z. M., Q. B. Zhang, H. L. Puppala, V. L. Colvin and P. J. Alvarez (2012). "Negligible particle-specific antibacterial activity of silver nanoparticles." Nano letters 12(8): 4271-4275.
Yung, P. T. and A. Ponce (2008). "Fast sterility assessment by germinable-endospore biodosimetry." Applied and environmental microbiology 74(24): 7669-7674.
校內:2022-09-01公開