| 研究生: |
陳湘陵 Chen, Hsiang-Ling |
|---|---|
| 論文名稱: |
探討HIP-1在KRAS突變之肺腺癌中扮演之角色 The role of HIP-1 in KRAS-mutated lung adenocarcinoma |
| 指導教授: |
呂佩融
Lu, Pei-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 肺腺癌 、類癌幹細胞 、KRA突變 、HIP-1 |
| 外文關鍵詞: | Lung adenocarcinoma, Cancer stem-like cells, Huntingtin-interacting protein-1, KRAS mutation |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺腺癌中最常見之突變致癌基因為EGFR 和KRAS。針對EGFR 和其下游分子的標靶治療可顯著抑制腫瘤生長,但患者最終皆因抗藥性的產生而復發。
目前為止,KRAS 突變仍缺乏有效的治療藥物,肺癌病人具有KRAS 突變的情況下有較差的存活率以及對化療有較差的反應,因此針對KRAS 突變肺癌患者開發有效的治療策略是非常必要的。有研究指出腫瘤中的癌幹細胞是導致抗藥性產生之主因並使患者的存活率較低。先前研究顯示Huntingtin-interacting protein-1 (HIP-1)是肺癌患者的早期診斷和預後標誌物。 HIP-1 透過阻斷EMT途徑而扮演抑制癌症轉移的角色。利用西方點墨法評估KRAS 野生型和突變型肺癌細胞系中HIP-1 的表現量,結果發現與KRAS 野生型細胞相比,KRAS 突變細胞中HIP-1 蛋白表達較低,因此我們假設HIP-1 可能影響KRAS 突變之肺腺癌中的癌幹細胞特性。為了驗證此假說,本研究在體外和體內試驗中利用癌幹細胞基因表現譜、腫瘤球體形成,腫瘤起始,轉移和抗藥性能力等分析方式去評估KRAS 野生型與突變型細胞的差異。在腫瘤球體形成測定中顯示KRAS突變細胞具有高球體形成能力,同時在活體中也具有高腫瘤起始、癌細胞轉移及抗藥性能力。將HIP-1 蛋白大量表現則顯著抑制腫瘤球體形成、細胞遷移和侵襲的能力。在異種移植小鼠模型中,HIP-1 過表現顯著抑制的腫瘤起始和轉移。此外,在KRAS 突變的肺癌細胞中HIP-1 過表現會透過抑制KRAS 來降低癌幹細胞標誌的表現量。根據這些結果,我們推測HIP-1 可以抑制KRAS 突變肺腺癌細胞的癌幹細胞特性。依據我們的結果可擴展關於KRAS 突變相關訊息途徑的知識,並為肺腺癌患者提供一個新的治療策略。
EGFR and KRAS genes mutant are the most frequently mutation sites found in lung adenocarcinoma (LAC) patients. Target therapies for EGFR and its downstream signaling molecules successfully cause tumor regression, however, patients develop drug resistance eventually. So far, effective therapeutic drugs for KRAS mutation patients are lack. Lung cancer patients with KRAS mutation show poor overall survival and poor responses to chemotherapy. An effective therapeutic strategy for KRAS mutation lung cancer patients is urgently needed. Recent studies indicate that cancer stem cells (CSCs) in tumors are the main source respond to drug resistance and cause poor survival rate of patients. Huntingtin-interacting protein-1 (HIP-1) is an early diagnosis and prognosis marker for lung cancer patients. HIP-1 plays as a metastasis suppressor through EMT pathway. The expression of HIP-1 in KRAS wild type and mutant lung cancer cell lines was evaluated by Western blotting and found low HIP-1 expression in KRAS mutation cells compared to KRAS wild type cells. We then made a hypothesis HIP-1 might mediate cell stemness properties in KRAS mutant LAC. To achieve this goal, stemness genes expression profile, sphere formation, tumor initiation, metastasis, and drug resistant ability were evaluated in KRAS mutant cells compared to KRAS wild type cells in vitro and in vivo. Sphere formation assay showed high sphere forming ability in KRAS mutant cells. KRAS mutant cells had high tumor initiation ability, cell mobility, and drug resistant in vitro and in vivo. HIP-1 overexpression significantly inhibited sphere formation, cell migration and invasion ability. HIP-1 overexpression significantly suppressed tumor initiation and metastasis in xenograft mice model. Furthermore, HIP-1 overexpression downregulated the expression levels of CSCs makers through suppressing KRAS specifically in KRAS-mutated lung cancer cells. According to these results, we suggested that HIP-1 could inhibit stemness properties in KRAS-mutant LAC cells. Our results may expand knowledge of KRAS mutant dependent pathway and provide new therapeutic strategy for LAC patients.
1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J Clin
68, 7-30, doi:10.3322/caac.21442 (2018).
2 Doroshow, D. B. et al. Immunotherapy in Non-Small Cell Lung Cancer: Facts and
Hopes. Clin Cancer Res, doi:10.1158/1078-0432.CCR-18-1538 (2019).
3 Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y. W. & Buchanan, P. Lung cancer:
Biology and treatment options. Biochim Biophys Acta 1856, 189-210,
doi:10.1016/j.bbcan.2015.08.002 (2015).
4 Lin, J. J. & Shaw, A. T. Resisting Resistance: Targeted Therapies in Lung Cancer.
Trends Cancer 2, 350-364, doi:10.1016/j.trecan.2016.05.010 (2016).
5 MacDonagh, L. et al. Lung cancer stem cells: The root of resistance. Cancer Lett
372, 147-156, doi:10.1016/j.canlet.2016.01.012 (2016).
6 Housman, G. et al. Drug resistance in cancer: an overview. Cancers (Basel) 6,
1769-1792, doi:10.3390/cancers6031769 (2014).
7 Kinehara, Y. et al. Semaphorin 7A promotes EGFR-TKI resistance in EGFR mutant
lung adenocarcinoma cells. JCI Insight 3, doi:10.1172/jci.insight.123093 (2018).
8 Jeon, H. M. & Lee, J. MET: roles in epithelial-mesenchymal transition and cancer
stemness. Ann Transl Med 5, 5, doi:10.21037/atm.2016.12.67 (2017).
9 Lim, Y. C., Kang, H. J. & Moon, J. H. C-Met pathway promotes self-renewal and
tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral
Oncol 50, 633-639, doi:10.1016/j.oraloncology.2014.04.004 (2014).
10 Li, J. W., Cao, S. H., Xu, J. L. & Zhong, H. De novo MET amplification promotes
intrinsic resistance to first-generation EGFR tyrosine kinase inhibitors. Cancer Biol
Ther, 1-4, doi:10.1080/15384047.2019.1617568 (2019).
11 Shi, P. et al. Met gene amplification and protein hyperactivation is a mechanism of
resistance to both first and third generation EGFR inhibitors in lung cancer
treatment. Cancer Lett 380, 494-504, doi:10.1016/j.canlet.2016.07.021 (2016).
12 Barlesi, F. et al. Routine molecular profiling of patients with advanced
non-small-cell lung cancer: results of a 1-year nationwide programme of the French
Cooperative Thoracic Intergroup (IFCT). Lancet 387, 1415-1426,
doi:10.1016/S0140-6736(16)00004-0 (2016).
13 McCormick, F. KRAS as a Therapeutic Target. Clinical cancer research : an
official journal of the American Association for Cancer Research 21, 1797-1801,
doi:10.1158/1078-0432.CCR-14-2662 (2015).
14 Romanidou, O., Landi, L., Cappuzzo, F. & Califano, R. Overcoming resistance to
- 82 -
first/second generation epidermal growth factor receptor tyrosine kinase inhibitors
and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer.
Therapeutic advances in medical oncology 8, 176-187,
doi:10.1177/1758834016631531 (2016).
15 Janne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.
The New England journal of medicine 372, 1689-1699,
doi:10.1056/NEJMoa1411817 (2015).
16 Mao, C. et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients
with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer 69,
272-278, doi:10.1016/j.lungcan.2009.11.020 (2010).
17 Roman, M. et al. KRAS oncogene in non-small cell lung cancer: clinical
perspectives on the treatment of an old target. Mol Cancer 17, 33,
doi:10.1186/s12943-018-0789-x (2018).
18 Janne, P. A. et al. Selumetinib Plus Docetaxel Compared With Docetaxel Alone and
Progression-Free Survival in Patients With KRAS-Mutant Advanced Non-Small
Cell Lung Cancer: The SELECT-1 Randomized Clinical Trial. Jama 317,
1844-1853, doi:10.1001/jama.2017.3438 (2017).
19 Konstantinidou, G. et al. RHOA-FAK is a required signaling axis for the
maintenance of KRAS-driven lung adenocarcinomas. Cancer discovery 3, 444-457,
doi:10.1158/2159-8290.CD-12-0388 (2013).
20 Togashi, Y. et al. Inhibition of beta-Catenin enhances the anticancer effect of
irreversible EGFR-TKI in EGFR-mutated non-small-cell lung cancer with a T790M
mutation. J Thorac Oncol 10, 93-101, doi:10.1097/JTO.0000000000000353 (2015).
21 Moon, B. S. et al. Role of oncogenic K-Ras in cancer stem cell activation by
aberrant Wnt/beta-catenin signaling. J Natl Cancer Inst 106, djt373,
doi:10.1093/jnci/djt373 (2014).
22 Wang, M. et al. Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled
by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway. Cancer Res
77, 2018-2028, doi:10.1158/0008-5472.CAN-16-0808 (2017).
23 Lytle, N. K., Barber, A. G. & Reya, T. Stem cell fate in cancer growth, progression
and therapy resistance. Nat Rev Cancer 18, 669-680,
doi:10.1038/s41568-018-0056-x (2018).
24 Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell stem cell 14,
275-291, doi:10.1016/j.stem.2014.02.006 (2014).
25 Ishizawa, K. et al. Tumor-initiating cells are rare in many human tumors. Cell Stem
Cell 7, 279-282, doi:10.1016/j.stem.2010.08.009 (2010).
26 Michor, F. & Polyak, K. The origins and implications of intratumor heterogeneity.
- 83 -
Cancer Prev Res (Phila) 3, 1361-1364, doi:10.1158/1940-6207.CAPR-10-0234
(2010).
27 Rich, J. N. Cancer stem cells: understanding tumor hierarchy and heterogeneity.
Medicine (Baltimore) 95, S2-7, doi:10.1097/MD.0000000000004764 (2016).
28 Li, K., Xu, B., Xu, G. & Liu, R. CCR7 regulates Twist to induce the
epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour
Biol 37, 419-424, doi:10.1007/s13277-015-3819-y (2016).
29 Hanrahan, K. et al. The role of epithelial-mesenchymal transition drivers ZEB1 and
ZEB2 in mediating docetaxel-resistant prostate cancer. Mol Oncol 11, 251-265,
doi:10.1002/1878-0261.12030 (2017).
30 Qian, Y. et al. aPKC-iota/P-Sp1/Snail signaling induces epithelial-mesenchymal
transition and immunosuppression in cholangiocarcinoma. Hepatology 66,
1165-1182, doi:10.1002/hep.29296 (2017).
31 Kahata, K., Dadras, M. S. & Moustakas, A. TGF-beta Family Signaling in
Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring
Harb Perspect Biol 10, doi:10.1101/cshperspect.a022194 (2018).
32 Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with
properties of stem cells. Cell 133, 704-715, doi:10.1016/j.cell.2008.03.027 (2008).
33 Morel, A. P. et al. Generation of breast cancer stem cells through
epithelial-mesenchymal transition. PLoS One 3, e2888,
doi:10.1371/journal.pone.0002888 (2008).
34 Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and
vital pathways. Cell Stem Cell 14, 306-321, doi:10.1016/j.stem.2014.02.002 (2014).
35 Liu, Y. P. et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung
adenocarcinoma by activating Notch signaling. Cancer Res 73, 406-416,
doi:10.1158/0008-5472.CAN-12-1733 (2013).
36 Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation
of the DNA damage response. Nature 444, 756-760, doi:10.1038/nature05236
(2006).
37 Sowa, T. et al. Association between epithelial-mesenchymal transition and cancer
stemness and their effect on the prognosis of lung adenocarcinoma. Cancer Med 4,
1853-1862, doi:10.1002/cam4.556 (2015).
38 Rao, D. S. et al. Huntingtin interacting protein 1 Is a clathrin coat binding protein
required for differentiation of late spermatogenic progenitors. Mol Cell Biol 21,
7796-7806, doi:10.1128/MCB.21.22.7796-7806.2001 (2001).
39 Waelter, S. et al. The huntingtin interacting protein HIP1 is a clathrin and
alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Hum Mol
- 84 -
Genet 10, 1807-1817, doi:10.1093/hmg/10.17.1807 (2001).
40 Kalchman, M. A. et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts
with membrane-associated huntingtin in the brain. Nat Genet 16, 44-53,
doi:10.1038/ng0597-44 (1997).
41 Ross, T. S., Bernard, O. A., Berger, R. & Gilliland, D. G. Fusion of Huntingtin
interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in
chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 91, 4419-4426
(1998).
42 Ross, T. S. & Gilliland, D. G. Transforming properties of the Huntingtin interacting
protein 1/ platelet-derived growth factor beta receptor fusion protein. J Biol Chem
274, 22328-22336, doi:10.1074/jbc.274.32.22328 (1999).
43 Hsu, C. Y. et al. Huntingtin-Interacting Protein-1 Is an Early-Stage Prognostic
Biomarker of Lung Adenocarcinoma and Suppresses Metastasis via Akt-mediated
Epithelial-Mesenchymal Transition. Am J Respir Crit Care Med 193, 869-880,
doi:10.1164/rccm.201412-2226OC (2016).
44 Marks, J. L. et al. Prognostic and therapeutic implications of EGFR and KRAS
mutations in resected lung adenocarcinoma. J Thorac Oncol 3, 111-116,
doi:10.1097/JTO.0b013e318160c607 (2008).
45 Weng, C. C. et al. Mutant Kras-induced upregulation of CD24 enhances prostate
cancer stemness and bone metastasis. Oncogene 38, 2005-2019,
doi:10.1038/s41388-018-0575-7 (2019).
46 Boumahdi, S. et al. SOX2 controls tumour initiation and cancer stem-cell functions
in squamous-cell carcinoma. Nature 511, 246-250, doi:10.1038/nature13305
(2014).
47 Wang, R. et al. iNOS promotes CD24(+)CD133(+) liver cancer stem cell
phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc
Natl Acad Sci U S A 115, E10127-E10136, doi:10.1073/pnas.1722100115 (2018).
48 Nguyen, L. V., Vanner, R., Dirks, P. & Eaves, C. J. Cancer stem cells: an evolving
concept. Nat Rev Cancer 12, 133-143, doi:10.1038/nrc3184 (2012).
49 Chang, J. C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and
treatment resistance. Medicine (Baltimore) 95, S20-25,
doi:10.1097/MD.0000000000004766 (2016).
50 Li, S. & Li, Q. Cancer stem cells and tumor metastasis (Review). Int J Oncol 44,
1806-1812, doi:10.3892/ijo.2014.2362 (2014).
51 Li, X. et al. SOX2 promotes tumor metastasis by stimulating
epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal
network. Cancer Lett 336, 379-389, doi:10.1016/j.canlet.2013.03.027 (2013).
- 85 -
52 Liu, J. et al. Lung cancer tumorigenicity and drug resistance are maintained
through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 4, 1698-1711,
doi:10.18632/oncotarget.1246 (2013).
53 Vesel, M. et al. ABCB1 and ABCG2 drug transporters are differentially expressed
in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin
treatment via altered Wnt signaling. Respir Res 18, 52,
doi:10.1186/s12931-017-0537-6 (2017).
54 Glumac, P. M. & LeBeau, A. M. The role of CD133 in cancer: a concise review.
Clin Transl Med 7, 18, doi:10.1186/s40169-018-0198-1 (2018).
55 Li, Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2, 17,
doi:10.1186/2162-3619-2-17 (2013).
56 Ferrer, I. et al. KRAS-Mutant non-small cell lung cancer: From biology to therapy.
Lung Cancer 124, 53-64, doi:10.1016/j.lungcan.2018.07.013 (2018).
57 Jang, T. W., Oak, C. H., Chang, H. K., Suo, S. J. & Jung, M. H. EGFR and KRAS
mutations in patients with adenocarcinoma of the lung. Korean J Intern Med 24,
48-54, doi:10.3904/kjim.2009.24.1.43 (2009).
58 Griesing, S. et al. Thyroid transcription factor-1-regulated microRNA-532-5p
targets KRAS and MKL2 oncogenes and induces apoptosis in lung adenocarcinoma
cells. Cancer Sci 108, 1394-1404, doi:10.1111/cas.13271 (2017).