簡易檢索 / 詳目顯示

研究生: 陳湘陵
Chen, Hsiang-Ling
論文名稱: 探討HIP-1在KRAS突變之肺腺癌中扮演之角色
The role of HIP-1 in KRAS-mutated lung adenocarcinoma
指導教授: 呂佩融
Lu, Pei-Jung
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 87
中文關鍵詞: 肺腺癌類癌幹細胞KRA突變HIP-1
外文關鍵詞: Lung adenocarcinoma, Cancer stem-like cells, Huntingtin-interacting protein-1, KRAS mutation
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺腺癌中最常見之突變致癌基因為EGFR 和KRAS。針對EGFR 和其下游分子的標靶治療可顯著抑制腫瘤生長,但患者最終皆因抗藥性的產生而復發。
    目前為止,KRAS 突變仍缺乏有效的治療藥物,肺癌病人具有KRAS 突變的情況下有較差的存活率以及對化療有較差的反應,因此針對KRAS 突變肺癌患者開發有效的治療策略是非常必要的。有研究指出腫瘤中的癌幹細胞是導致抗藥性產生之主因並使患者的存活率較低。先前研究顯示Huntingtin-interacting protein-1 (HIP-1)是肺癌患者的早期診斷和預後標誌物。 HIP-1 透過阻斷EMT途徑而扮演抑制癌症轉移的角色。利用西方點墨法評估KRAS 野生型和突變型肺癌細胞系中HIP-1 的表現量,結果發現與KRAS 野生型細胞相比,KRAS 突變細胞中HIP-1 蛋白表達較低,因此我們假設HIP-1 可能影響KRAS 突變之肺腺癌中的癌幹細胞特性。為了驗證此假說,本研究在體外和體內試驗中利用癌幹細胞基因表現譜、腫瘤球體形成,腫瘤起始,轉移和抗藥性能力等分析方式去評估KRAS 野生型與突變型細胞的差異。在腫瘤球體形成測定中顯示KRAS突變細胞具有高球體形成能力,同時在活體中也具有高腫瘤起始、癌細胞轉移及抗藥性能力。將HIP-1 蛋白大量表現則顯著抑制腫瘤球體形成、細胞遷移和侵襲的能力。在異種移植小鼠模型中,HIP-1 過表現顯著抑制的腫瘤起始和轉移。此外,在KRAS 突變的肺癌細胞中HIP-1 過表現會透過抑制KRAS 來降低癌幹細胞標誌的表現量。根據這些結果,我們推測HIP-1 可以抑制KRAS 突變肺腺癌細胞的癌幹細胞特性。依據我們的結果可擴展關於KRAS 突變相關訊息途徑的知識,並為肺腺癌患者提供一個新的治療策略。

    EGFR and KRAS genes mutant are the most frequently mutation sites found in lung adenocarcinoma (LAC) patients. Target therapies for EGFR and its downstream signaling molecules successfully cause tumor regression, however, patients develop drug resistance eventually. So far, effective therapeutic drugs for KRAS mutation patients are lack. Lung cancer patients with KRAS mutation show poor overall survival and poor responses to chemotherapy. An effective therapeutic strategy for KRAS mutation lung cancer patients is urgently needed. Recent studies indicate that cancer stem cells (CSCs) in tumors are the main source respond to drug resistance and cause poor survival rate of patients. Huntingtin-interacting protein-1 (HIP-1) is an early diagnosis and prognosis marker for lung cancer patients. HIP-1 plays as a metastasis suppressor through EMT pathway. The expression of HIP-1 in KRAS wild type and mutant lung cancer cell lines was evaluated by Western blotting and found low HIP-1 expression in KRAS mutation cells compared to KRAS wild type cells. We then made a hypothesis HIP-1 might mediate cell stemness properties in KRAS mutant LAC. To achieve this goal, stemness genes expression profile, sphere formation, tumor initiation, metastasis, and drug resistant ability were evaluated in KRAS mutant cells compared to KRAS wild type cells in vitro and in vivo. Sphere formation assay showed high sphere forming ability in KRAS mutant cells. KRAS mutant cells had high tumor initiation ability, cell mobility, and drug resistant in vitro and in vivo. HIP-1 overexpression significantly inhibited sphere formation, cell migration and invasion ability. HIP-1 overexpression significantly suppressed tumor initiation and metastasis in xenograft mice model. Furthermore, HIP-1 overexpression downregulated the expression levels of CSCs makers through suppressing KRAS specifically in KRAS-mutated lung cancer cells. According to these results, we suggested that HIP-1 could inhibit stemness properties in KRAS-mutant LAC cells. Our results may expand knowledge of KRAS mutant dependent pathway and provide new therapeutic strategy for LAC patients.

    中文摘要............. I Abstract ............. II 致謝............. III Chapter 1. Introduction ......... 1 1.1 Lung cancer ........... 1 1-2 Treatment and challenge in lung cancer ...... 1 1-3 KRAS and EGFR mutation in lung cancer ..... 2 1-4 Cancer stem cell (CSCs)......... 3 1-5 Huntingtin interacting protein-1 (HIP-1)...... 4 1-6 Significance........... 6 Chapter 2. Materials and Methods ....... 7 2-1 Cell culture........... 7 2-2 Generation of plasmid.......... 7 2-3 Lentivirus production and infection....... 8 2-4 Generation of HIP-1 overexpression/knockdown cell line.... 9 2-5 DNA transfection........... 9 2-6 Reverse Transcription and quantitative real-time PCR (qPCR). 9 2-7 Western blotting (WB)......... 10 2-8 Sphere culture........... 11 2-9 MTT assay............ 11 2-10 Migration and invasion assays....... 12 2-11 Drug resistance........... 12 2-12 Immunofluorescence staining of CD133-positive lung cancer cell.. 12 2-13 Animal studies.......... 13 2-14 Hematoxylin and eosin (H&E) staining....... 14 2-15 Immunohistochemistry (IHC)........ 14 2-16 Statistical analysis.......... 15 Chapter 3. Results........... 16 3-1 RAS-and EGFR-mutated lung cancer cell lines exhibit low HIP-1 expressions........... 16 3-2 Low-expression of HIP-1 in KRAS-mutated cell lines has highly CSCs property.......... 16 3-3 The subpopulation of CSCs in lung cancer exhibit highly initiation, metastasis ability and lower expression of HIP-1 in KRAS mutation. 20 3-4 Manipulation of HIP-1 regulate CSCs property and metastasis in KRAS-mutated lung cancer cell lines...... 22 3-5 HIP-1 downregulated CD133 by suppress expression of KRAS specifically in KRAS-mutated lung cancer...... 23 3-6 EGFR-mutated lung cell exhibit low HIP-1 expression and highly CSCs property but not through CD133...... 24 Chapter 4. Discussion and Conclusion........ 27 Figure and Table... 31 Figure 1. RAS- and EGFR-mutated lung cancer cell lines exhibited low HIP-1 expressions.... 32 Figure 2. Low-expression of HIP-1 in RAS- and EGFR-mutated cell lines has high stemness ability... 34 Figure 3. Quantification of luminescence activity of lung cancer cell line for animal model....35 Figure 4. KRAS-mutated LAC cell lines has high tumor initiation ability in vivo.... 37 Figure 5. RAS- and EGFR-mutated lung cancer cell have higher cellular mobility compared to WT... 38 Figure 6. KRAS-mutated lung cancer cell has high tumor metastasis ability in vivo... 40 Figure 7. RAS-mutated lung cancer cell has high cisplatin resistance ability... 41 Figure 8. KRAS-mutated lung cancer cell has high tumor initiation ability and metastasis than NRAS-mutated lung cancer cell. 43 Figure 9. KRAS-mutation has high tumor initiation ability than NRASmutated lung cancer cell... 45 Figure 10. Enrichment of CSCs marker CD133+ has highly metastasis in KRAS.... 46 Figure 11. CSCs exhibits downregulation of HIP-1 and upregulation of stemness-related gene in H1355 which is KRAS-mutated cell. 48 Figure 12. CSCs of KRAS- mutated cell exhibits downregulation of HIP-1 and upregulation of stemness-related gene.. 50 Figure 13. Overexpression of HIP-1 decreased sphere formation in RAS-mutated lung cancer cell lines... 51 Figure 14. Knockdown of HIP-1 enhance sphere formation in lung cancer cell lines... 52 Figure 15. Overexpression of HIP-1 downregulated migration and invasion in KRAS-mutated lung cancer cell lines...53 Figure 16. Knockdown of HIP-1 enhance migration and invasion in lung cancer cell lines...54 Figure 17. HIP-1 suppresses tumor initiation ability in KRAS-mutated lung cancer cell lines in vivo.. 56 Figure 18. HIP-1 suppresses tumor metastasis ability in KRAS-mutated lung cancer cell lines... 58 Figure 19. Overexpression of HIP-1 reduces tumor initiation ability in KRAS-mutated lung cancer cell lines... 60 Figure 20. Knockdown of HIP-1 enhance tumor initiation ability in lung cancer cell lines... 62 Figure 21. HIP-1 is downregulated expression of CD133 in NRAS-mutated lung cancer cell lines... 63 Figure 22. HIP-1 is downregulated expression of CD133 in KRAS-mutated lung cancer cell lines... 64 Figure 23. Knockdown of HIP-1 upregulated CD133 in lung cancer cell lines.... 65 Figure 24. HIP-1 decreased expression of KRAS in RAS -mutated lung cancer cell lines... 66 Figure 25. Overexpression of HIP-1 was not affect expression of KRAS in KRAS-WT lung cancer cell lines... 67 Figure 26. Overexpression of KRAS and KRAS mutant upregulated CD133 in lung cancer cell lines.. 68 Figure 27. EGFR-mutation has high tumor initiation ability than WT lung cancer cell...70 Figure 28. EGFR-mutated lung cancer cell has high tumor metastasis ability in vivo...71 Figure 29. Overexpression of EGFR-WT, Del 19, L858R and in WT lung cancer cell lines CL1-1.. 72 Figure 30. EGFR mutation has highly migration and low proliferation in lung cancer cell lines... 74 Figure 31. EGFR mutation has highly CSCs property in vitro.. 75 Figure 32. EGFR mutation downregulated expression of HIP-1, but had no relationship with CD133 in lung cancer cell lines.. 76 Table 1. List of the lung cancer cell line and type of mutation. 77 Table 1. List of the gene-specific primer sequences.. 78 Table 1. List of antibodies... 80 Reference.... 81 Appendix..... 86 Appendix 1. KRAS- muation tumor shown poor clinical outcome in lung patients....87

    1 Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J Clin
    68, 7-30, doi:10.3322/caac.21442 (2018).
    2 Doroshow, D. B. et al. Immunotherapy in Non-Small Cell Lung Cancer: Facts and
    Hopes. Clin Cancer Res, doi:10.1158/1078-0432.CCR-18-1538 (2019).
    3 Lemjabbar-Alaoui, H., Hassan, O. U., Yang, Y. W. & Buchanan, P. Lung cancer:
    Biology and treatment options. Biochim Biophys Acta 1856, 189-210,
    doi:10.1016/j.bbcan.2015.08.002 (2015).
    4 Lin, J. J. & Shaw, A. T. Resisting Resistance: Targeted Therapies in Lung Cancer.
    Trends Cancer 2, 350-364, doi:10.1016/j.trecan.2016.05.010 (2016).
    5 MacDonagh, L. et al. Lung cancer stem cells: The root of resistance. Cancer Lett
    372, 147-156, doi:10.1016/j.canlet.2016.01.012 (2016).
    6 Housman, G. et al. Drug resistance in cancer: an overview. Cancers (Basel) 6,
    1769-1792, doi:10.3390/cancers6031769 (2014).
    7 Kinehara, Y. et al. Semaphorin 7A promotes EGFR-TKI resistance in EGFR mutant
    lung adenocarcinoma cells. JCI Insight 3, doi:10.1172/jci.insight.123093 (2018).
    8 Jeon, H. M. & Lee, J. MET: roles in epithelial-mesenchymal transition and cancer
    stemness. Ann Transl Med 5, 5, doi:10.21037/atm.2016.12.67 (2017).
    9 Lim, Y. C., Kang, H. J. & Moon, J. H. C-Met pathway promotes self-renewal and
    tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral
    Oncol 50, 633-639, doi:10.1016/j.oraloncology.2014.04.004 (2014).
    10 Li, J. W., Cao, S. H., Xu, J. L. & Zhong, H. De novo MET amplification promotes
    intrinsic resistance to first-generation EGFR tyrosine kinase inhibitors. Cancer Biol
    Ther, 1-4, doi:10.1080/15384047.2019.1617568 (2019).
    11 Shi, P. et al. Met gene amplification and protein hyperactivation is a mechanism of
    resistance to both first and third generation EGFR inhibitors in lung cancer
    treatment. Cancer Lett 380, 494-504, doi:10.1016/j.canlet.2016.07.021 (2016).
    12 Barlesi, F. et al. Routine molecular profiling of patients with advanced
    non-small-cell lung cancer: results of a 1-year nationwide programme of the French
    Cooperative Thoracic Intergroup (IFCT). Lancet 387, 1415-1426,
    doi:10.1016/S0140-6736(16)00004-0 (2016).
    13 McCormick, F. KRAS as a Therapeutic Target. Clinical cancer research : an
    official journal of the American Association for Cancer Research 21, 1797-1801,
    doi:10.1158/1078-0432.CCR-14-2662 (2015).
    14 Romanidou, O., Landi, L., Cappuzzo, F. & Califano, R. Overcoming resistance to
    - 82 -
    first/second generation epidermal growth factor receptor tyrosine kinase inhibitors
    and ALK inhibitors in oncogene-addicted advanced non-small cell lung cancer.
    Therapeutic advances in medical oncology 8, 176-187,
    doi:10.1177/1758834016631531 (2016).
    15 Janne, P. A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.
    The New England journal of medicine 372, 1689-1699,
    doi:10.1056/NEJMoa1411817 (2015).
    16 Mao, C. et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients
    with non-small cell lung cancer: a meta-analysis of 22 studies. Lung Cancer 69,
    272-278, doi:10.1016/j.lungcan.2009.11.020 (2010).
    17 Roman, M. et al. KRAS oncogene in non-small cell lung cancer: clinical
    perspectives on the treatment of an old target. Mol Cancer 17, 33,
    doi:10.1186/s12943-018-0789-x (2018).
    18 Janne, P. A. et al. Selumetinib Plus Docetaxel Compared With Docetaxel Alone and
    Progression-Free Survival in Patients With KRAS-Mutant Advanced Non-Small
    Cell Lung Cancer: The SELECT-1 Randomized Clinical Trial. Jama 317,
    1844-1853, doi:10.1001/jama.2017.3438 (2017).
    19 Konstantinidou, G. et al. RHOA-FAK is a required signaling axis for the
    maintenance of KRAS-driven lung adenocarcinomas. Cancer discovery 3, 444-457,
    doi:10.1158/2159-8290.CD-12-0388 (2013).
    20 Togashi, Y. et al. Inhibition of beta-Catenin enhances the anticancer effect of
    irreversible EGFR-TKI in EGFR-mutated non-small-cell lung cancer with a T790M
    mutation. J Thorac Oncol 10, 93-101, doi:10.1097/JTO.0000000000000353 (2015).
    21 Moon, B. S. et al. Role of oncogenic K-Ras in cancer stem cell activation by
    aberrant Wnt/beta-catenin signaling. J Natl Cancer Inst 106, djt373,
    doi:10.1093/jnci/djt373 (2014).
    22 Wang, M. et al. Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled
    by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway. Cancer Res
    77, 2018-2028, doi:10.1158/0008-5472.CAN-16-0808 (2017).
    23 Lytle, N. K., Barber, A. G. & Reya, T. Stem cell fate in cancer growth, progression
    and therapy resistance. Nat Rev Cancer 18, 669-680,
    doi:10.1038/s41568-018-0056-x (2018).
    24 Kreso, A. & Dick, J. E. Evolution of the cancer stem cell model. Cell stem cell 14,
    275-291, doi:10.1016/j.stem.2014.02.006 (2014).
    25 Ishizawa, K. et al. Tumor-initiating cells are rare in many human tumors. Cell Stem
    Cell 7, 279-282, doi:10.1016/j.stem.2010.08.009 (2010).
    26 Michor, F. & Polyak, K. The origins and implications of intratumor heterogeneity.
    - 83 -
    Cancer Prev Res (Phila) 3, 1361-1364, doi:10.1158/1940-6207.CAPR-10-0234
    (2010).
    27 Rich, J. N. Cancer stem cells: understanding tumor hierarchy and heterogeneity.
    Medicine (Baltimore) 95, S2-7, doi:10.1097/MD.0000000000004764 (2016).
    28 Li, K., Xu, B., Xu, G. & Liu, R. CCR7 regulates Twist to induce the
    epithelial-mesenchymal transition in pancreatic ductal adenocarcinoma. Tumour
    Biol 37, 419-424, doi:10.1007/s13277-015-3819-y (2016).
    29 Hanrahan, K. et al. The role of epithelial-mesenchymal transition drivers ZEB1 and
    ZEB2 in mediating docetaxel-resistant prostate cancer. Mol Oncol 11, 251-265,
    doi:10.1002/1878-0261.12030 (2017).
    30 Qian, Y. et al. aPKC-iota/P-Sp1/Snail signaling induces epithelial-mesenchymal
    transition and immunosuppression in cholangiocarcinoma. Hepatology 66,
    1165-1182, doi:10.1002/hep.29296 (2017).
    31 Kahata, K., Dadras, M. S. & Moustakas, A. TGF-beta Family Signaling in
    Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring
    Harb Perspect Biol 10, doi:10.1101/cshperspect.a022194 (2018).
    32 Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with
    properties of stem cells. Cell 133, 704-715, doi:10.1016/j.cell.2008.03.027 (2008).
    33 Morel, A. P. et al. Generation of breast cancer stem cells through
    epithelial-mesenchymal transition. PLoS One 3, e2888,
    doi:10.1371/journal.pone.0002888 (2008).
    34 Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and
    vital pathways. Cell Stem Cell 14, 306-321, doi:10.1016/j.stem.2014.02.002 (2014).
    35 Liu, Y. P. et al. Cisplatin selects for multidrug-resistant CD133+ cells in lung
    adenocarcinoma by activating Notch signaling. Cancer Res 73, 406-416,
    doi:10.1158/0008-5472.CAN-12-1733 (2013).
    36 Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation
    of the DNA damage response. Nature 444, 756-760, doi:10.1038/nature05236
    (2006).
    37 Sowa, T. et al. Association between epithelial-mesenchymal transition and cancer
    stemness and their effect on the prognosis of lung adenocarcinoma. Cancer Med 4,
    1853-1862, doi:10.1002/cam4.556 (2015).
    38 Rao, D. S. et al. Huntingtin interacting protein 1 Is a clathrin coat binding protein
    required for differentiation of late spermatogenic progenitors. Mol Cell Biol 21,
    7796-7806, doi:10.1128/MCB.21.22.7796-7806.2001 (2001).
    39 Waelter, S. et al. The huntingtin interacting protein HIP1 is a clathrin and
    alpha-adaptin-binding protein involved in receptor-mediated endocytosis. Hum Mol
    - 84 -
    Genet 10, 1807-1817, doi:10.1093/hmg/10.17.1807 (2001).
    40 Kalchman, M. A. et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts
    with membrane-associated huntingtin in the brain. Nat Genet 16, 44-53,
    doi:10.1038/ng0597-44 (1997).
    41 Ross, T. S., Bernard, O. A., Berger, R. & Gilliland, D. G. Fusion of Huntingtin
    interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in
    chronic myelomonocytic leukemia with t(5;7)(q33;q11.2). Blood 91, 4419-4426
    (1998).
    42 Ross, T. S. & Gilliland, D. G. Transforming properties of the Huntingtin interacting
    protein 1/ platelet-derived growth factor beta receptor fusion protein. J Biol Chem
    274, 22328-22336, doi:10.1074/jbc.274.32.22328 (1999).
    43 Hsu, C. Y. et al. Huntingtin-Interacting Protein-1 Is an Early-Stage Prognostic
    Biomarker of Lung Adenocarcinoma and Suppresses Metastasis via Akt-mediated
    Epithelial-Mesenchymal Transition. Am J Respir Crit Care Med 193, 869-880,
    doi:10.1164/rccm.201412-2226OC (2016).
    44 Marks, J. L. et al. Prognostic and therapeutic implications of EGFR and KRAS
    mutations in resected lung adenocarcinoma. J Thorac Oncol 3, 111-116,
    doi:10.1097/JTO.0b013e318160c607 (2008).
    45 Weng, C. C. et al. Mutant Kras-induced upregulation of CD24 enhances prostate
    cancer stemness and bone metastasis. Oncogene 38, 2005-2019,
    doi:10.1038/s41388-018-0575-7 (2019).
    46 Boumahdi, S. et al. SOX2 controls tumour initiation and cancer stem-cell functions
    in squamous-cell carcinoma. Nature 511, 246-250, doi:10.1038/nature13305
    (2014).
    47 Wang, R. et al. iNOS promotes CD24(+)CD133(+) liver cancer stem cell
    phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc
    Natl Acad Sci U S A 115, E10127-E10136, doi:10.1073/pnas.1722100115 (2018).
    48 Nguyen, L. V., Vanner, R., Dirks, P. & Eaves, C. J. Cancer stem cells: an evolving
    concept. Nat Rev Cancer 12, 133-143, doi:10.1038/nrc3184 (2012).
    49 Chang, J. C. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and
    treatment resistance. Medicine (Baltimore) 95, S20-25,
    doi:10.1097/MD.0000000000004766 (2016).
    50 Li, S. & Li, Q. Cancer stem cells and tumor metastasis (Review). Int J Oncol 44,
    1806-1812, doi:10.3892/ijo.2014.2362 (2014).
    51 Li, X. et al. SOX2 promotes tumor metastasis by stimulating
    epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal
    network. Cancer Lett 336, 379-389, doi:10.1016/j.canlet.2013.03.027 (2013).
    - 85 -
    52 Liu, J. et al. Lung cancer tumorigenicity and drug resistance are maintained
    through ALDH(hi)CD44(hi) tumor initiating cells. Oncotarget 4, 1698-1711,
    doi:10.18632/oncotarget.1246 (2013).
    53 Vesel, M. et al. ABCB1 and ABCG2 drug transporters are differentially expressed
    in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin
    treatment via altered Wnt signaling. Respir Res 18, 52,
    doi:10.1186/s12931-017-0537-6 (2017).
    54 Glumac, P. M. & LeBeau, A. M. The role of CD133 in cancer: a concise review.
    Clin Transl Med 7, 18, doi:10.1186/s40169-018-0198-1 (2018).
    55 Li, Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol 2, 17,
    doi:10.1186/2162-3619-2-17 (2013).
    56 Ferrer, I. et al. KRAS-Mutant non-small cell lung cancer: From biology to therapy.
    Lung Cancer 124, 53-64, doi:10.1016/j.lungcan.2018.07.013 (2018).
    57 Jang, T. W., Oak, C. H., Chang, H. K., Suo, S. J. & Jung, M. H. EGFR and KRAS
    mutations in patients with adenocarcinoma of the lung. Korean J Intern Med 24,
    48-54, doi:10.3904/kjim.2009.24.1.43 (2009).
    58 Griesing, S. et al. Thyroid transcription factor-1-regulated microRNA-532-5p
    targets KRAS and MKL2 oncogenes and induces apoptosis in lung adenocarcinoma
    cells. Cancer Sci 108, 1394-1404, doi:10.1111/cas.13271 (2017).

    下載圖示 校內:2024-07-26公開
    校外:2024-07-26公開
    QR CODE