簡易檢索 / 詳目顯示

研究生: 張家豪
Chang, Chia-Hao
論文名稱: 沃斯田鐵系不銹鋼於CO-H2-H2O氣氛中之金屬塵化現象研究
Metal Dusting Behavior of Austenitic Stainless Steels in CO-H2-H2O Mixed Gases
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 113
中文關鍵詞: 塵化不銹鋼
外文關鍵詞: metal dusting, stainless steel
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬塵化是一種高溫腐蝕現象,主要發生在400~800 ℃的溫度範圍、且含有高碳勢的氣氛環境中,屬於碳化反應的範疇。塵化反應會造成材料發生分解的現象,產生顆粒狀的金屬粉末、氧化物、碳化物及積碳等混合物,在合金表面形成蝕孔。
    本研究主要探討多種不銹鋼(304L、310、321及347 SS)於600℃之35 % CO + 60 % H2 + 5 % H2O氣氛環境中,經過長時間曝露試驗後之塵化現象。不銹鋼經過500小時塵化試驗後,試片表面皆可觀察到塵化蝕孔的生成。利用掃瞄式電子顯微鏡(SEM)和穿透式電子顯微鏡(TEM),同時搭配能量質譜分析儀(EDS)進行試片所生成蝕孔之表面及橫截面的微觀組織觀察。蝕孔下方基材區域存在著多種的形貌,最外層為具有石磨結構的積碳區域並有鐵/鎳金屬顆粒鑲嵌其中;而位於基材最上端區域則存在一層以氧化鉻為主的多孔性氧化物層,而緊鄰著此氧化層下方則為沒有析出物存在的鉻缺乏區,在鉻缺乏區當中靠近氧化鉻層的那一端可以觀察到許多因選擇性氧化反應而形成次微米級孔洞,更往基材內部的區域觀察時,則可以在基材中觀察到大量碳化物析出。
    304L及347不銹鋼經過600 ℃之35%CO-60%H2-5%H2O混合氣氛之長時間曝露試驗後,304L不銹鋼試片的蝕孔之最大深度與半徑的比值為1:3.44,而347不銹鋼試片的比值為1:5.71,主要是因為347不銹鋼中的合金元素鈮能夠有效地減緩塵化反應的發生速度,以致造成這樣的差異。
    321不銹鋼於600 ℃之35%CO-60%H2-5%H2O 氣氛中,經過500及1000小時的曝露試驗之後,試片的邊緣(edge)及角隅(corner)為蝕孔優先成核位置,歸因於試片邊緣及角隅位置的氧化鉻鈍化膜在生成過程中受幾何因素的影響而容易生成裂縫,進而成為塵化反應的起始位置。321不銹鋼試片因塵化反應形成的金屬顆粒,基本上具有鐵/鎳富集的化學組成。而蝕孔下方基材中的碳化物析出區域大小,隨著曝露時間的增加而有增大的趨勢,經過TEM的分析得知,化學組態Cr7C3的碳化鉻主要生成於高碳濃度的基材外層區域,而化學組態Cr23C6的碳化鉻則存在於碳濃度較低的基材內部區域。
    310不銹鋼於於600 ℃之35%CO-60%H2-5%H2O混合氣氛中進行500及1000小時的曝露試驗之後,試片表面的蝕孔呈現出花瓣般縐折的形貌,且蝕孔底部呈現出凹凸起伏的不平整表面,可歸因於表面所生成的鉻/錳氧化物及鉻/錳/鐵氧化物兩者的保護性和二次蝕孔於蝕孔底部的成核成長有關。

    Metal dusting is a high temperature corrosion phenomenon which mainly occurs in high carbon-activity atmospheres in the temperature ranging of 400 to 800 ℃. Metal dusting process would disintegrate metal materials into a mixture of powdery metal, oxide, carbide and carbon deposits.
    The metal dusting behavior of Type 304L, 310, 321 and 347 stainless steels (SSs) in a flowing CO/H2/H2O mixed gas stream at 600 ℃ was investigated. After a long-term exposure(500-hr) in a 35 % CO + 60 % H2 + 5 % H2O gas, large pits were formed on steel surfaces. The microstructures and chemical compositions of the reaction products and the substrates under the pits were examined using a scanning electron microscope (SEM) and a transmission electron microscope (TEM), each combined with an energy dispersive spectrometer (EDS). At the bottom of the pits, a thick layer of coke consisting of carbon and disintegrated Fe/Ni particles was found. A thin layer of oxide was observed below this outer layer, and a Cr-depleted precipitate-free zone contained voids just beneath this layer which resulted from the selective oxidation of stainless steels. Massive matrix carbide precipitation occurred below the Cr-depleted zone. Moving toward the interior of the substrate, Massive carbide and intergranular carbides were formed in the inner most portions of the scales beneath the substrate.
    The aspect ratio of the pits formed in 304L SS was higher than that formed in 347 SS. The experimental results showed that niobium (Nb) could delay the ingress of carbon and retard the metal dusting reaction.
    According to the results, the edges and corners of 321 SS were the most sensitive sites for pitting attack. The relatively high tendency for oxide passive film to breakdown at the edges and corners was responsible for the initiation of metal dusting. The composition of the metal particles dislodged from 321 SS surface was basically the Fe/Ni metallic phase, which might be either enriched with Ni or Fe. The carbide precipitation zone under the pit increased with increasing the exposure time in the high carbon-activity gas-environment. Matrix carbide in the form of Cr7C3 was observed in the outer zone close to the pit bottom, while grain boundary carbide in the form Cr23C6 was observed in the area far below the pit bottom.
    After a long-term exposure (500-hr) of 310 SS, the coalescence of small pits would cause the formation of pit with a petal-like feature. The cracks at the substrate under the pit were the preferential sites for carbon inward diffusion and led to metal dusting attack. Secondary pit nucleation at the bottom of the primary pit would lead to the development of irregular appearance of the bottom surface. The relatively high tendency for oxide passive film to breakdown at the Cr/Mn/Fe oxide covered area was responsible for the enlargement of pit size.

    總目錄 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅲ 致謝……….…………………………………………………………Ⅴ 總目錄…………………………………………………………………Ⅶ 表目錄…………………………………………………………………Ⅹ 圖目錄……………………………………………………………….…XI 第一章 前言……………………………………………………………1 第二章 相關文獻及理論基礎…………………………………………4 2.1 金屬塵化 (Metal dusting) ……………………………………4 2.2塵化熱力學………………………………………………………5 2.3塵化機制……….............................…………………………..…8 2.2.1鐵及低合金鋼…………..…………………………………8 2.2.2高合金鋼…………………………………………………12 2.4合金元素對於高溫塵化性質之影響…………………………13 2.4.1鉻對於鐵及鐵基合金塵化性質之影響…………………13 2.4.2錳對於鐵及鐵基合金塵化性質之影響…………………14 2.4.3鎢、鈮、鈦及鉬對於鐵及鐵基塵化性質之影響…...........14 2.5高溫氧化……..................................................………………15 2.6內部碳化….................................................................................17 第三章 實驗方法與步驟………………………………………………27 3.1實驗材料………………………………………………………27 3.1.1試片準備…………………………………………………27 3.1.2結晶結構分析……………………………………………27 3.2長時間曝露試驗………………………………………………28 3.2.1長時間曝露試驗試片前處理……………………………28 3.2.2長時間曝露試驗參數……………………………………28 3.3長時間曝露試驗後試片分析………………………..…………29 3.3.1表面型態觀察及成份分析………………………………29 3.3.2表面生成產物之形貌觀察與結構分析…………………29 3.3.3橫截面之微觀組織觀察及化學成分分析………………30 第四章 實驗結果與討論………………………………………………35 4.1 304L與347不銹鋼經長時間曝露試驗後之結果………..…35 4.1.1 304L不銹鋼之表面形貌觀察及生成物分析結果…..…35 4.1.2 304L不銹鋼之橫截面顯微組織及化學成分分析…..…36 4.1.3 347不銹鋼之表面形貌觀察及生成物分析結果…........45 4.1.4 347不銹鋼之橫截面顯微組織及化學成分分析…........53 4.1.5 304L與347不銹鋼之塵化現象之異同…......................58 4.2 幾何因素對於不銹鋼塵化行為之影響....................................61 4.2.1 321不銹鋼表面型態及生成物之分析結果.....................61 4.2.2 321不銹鋼之橫截面顯微組織及化學成分分析.............73 4.2.3 321不銹鋼蝕孔下方基材中析出碳化物之鑑定.............78 4.3 氧化物種類與基材裂縫對於塵化蝕孔形貌之影響..........82 4.3.1 310不銹鋼表面型態及生成物之分析結果.....................82 4.3.2 310不銹鋼蝕孔邊緣形貌觀察.........................................92 4.3.3 310不銹鋼之橫截面顯微組織及化學成分分析.............94 4.3.2 310不銹鋼塵化蝕孔的生成演進機制.............................96 第五章 結論…………………………………………………………..103 參考文獻…………….……………………………….…………..…105 表目錄 表3-1 304L、310、321、347不銹鋼之化學成分(wt %)。 Table 3-1 Chemical compositions of the 304L,310,321, and 347 SS…..31表4-1 鐵、鉻、鎳、錳等元素氧化反應式之自由能變化[50]。 Table 4-1 Gibbs free energy change of the oxidation of Fe, Cr, Ni, and Mn[50].....................................................................................85   圖目錄 圖2-1 塵化環境中主要氣體組成其反應平衡常數與溫度之關係[45]。 Fig. 2-1 Equilibrium constants for key reactions which can occur in the metal dusting environments [45] ……………………………...19 圖2-2鐵金屬之塵化機制示意圖[23]。 Fig. 2-2 Schematic diagrams of the metal dusting mechanism on pure iron [23]……………………………………………………………..20 圖2-3 鐵及低合金鋼在塵化過程中碳濃度的變化[22]。 Fig. 2-3 Schematic diagrams of the metal dusting mechanism on pure iron and low-alloy steel [22]……………………………………..21 圖2-4 高合金鋼的塵化機制示意圖[43]。 Fig. 2-4 Schematic diagrams of the metal dusting mechanism on high-alloy steels [43]………………………………………...22 圖2-5 高合金鋼的塵化機制示意圖 [24]。 Fig. 2-5Schematic diagrams of the progression of high-alloy steels degradation [24] …………………………………………..…...23 圖2-6 不同鉻含量於合金800及合金803經高碳勢氣氛曝露試驗後,重量變化與時間之關係[47]。 Fig.2-6 The variety of metal wastage rate with exposure time on material with different chromium contents for alloy 800 and alloy 803.[47]………………………………………………………...24 圖2-7 鎢、鈮、鈦及鉬等元素對於Fe-20%Cr-32%Ni 合金在600 ℃之24%CO-74%H2-2%H2O混合氣氛中塵化阻抗的影響[34]。 Fig. 2-7 The metal wastage versus time for the tungsten, niobium, titanium and molybdenum-doped Fe-20%Cr-32%Ni alloy in flowing 24%CO-74%H2-2%H2O at 600 ℃ showing [34] ….25 圖2-8 部分氧化物的Ellingham自由能圖[49]。 Fig. 2-8 Ellingham digram of selection oxides [49].................................26 圖3-1 實驗流程圖。 Fig. 3-1 Experimental procedure…………..……………………………32 圖3-2 不銹鋼試片之規格 Fig. 3-2 Schematic diagram of the dimension of SS specimens………..33 圖3-3 高溫塵化試驗裝置示意圖。 Fig. 3-3 Schematic diagram of the experimental apparatus for the metal dusting test…………..……………………………….………34 圖4-1 (a) 304L不銹鋼試片表面經#1000號SiC砂紙研磨後之巨觀形貌,(b) 放大觀察之SEM影像。 Fig. 4-1 (a) Micrographs showing surface appearance of 304L specimen with ground by #1000 SiC paper before exposure test; (b) high magnification SEM image…………………………….……..37 圖4-2 (a) 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之形貌,(b) 移除表面積碳。 Fig. 4-2 Micrographs showing surface appearance of 304L specimen after exposure test in 35 % CO+60 % H2+5 % H2O mixed gas at 600 ℃for 500 hours; (a) 304L SS with coke deposits remaining on the surface and (b) 304L SS with surface coke blown-away…38 圖4-3 (a) 304L不銹鋼試片經曝露試驗後之表面碳纖維SEM影像觀察,(b) 碳纖維及頂端金屬顆粒(點A)之高倍率TEM影像,(c) 金屬顆粒之EDS分析結果。 Fig. 4-3 (a) SEM micrographs showing carbon filaments formed on 304L SS surface after exposure test, (b) TEM image showing the carbon filament decorated with a metallic particle (labeled as A) at its tip, and (c) EDS results showing the chemical composition of the metallic particle A…………………………………..…39 圖4-4 (a) 304L不銹鋼原材及(b) 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之表面X光繞射分析圖。 Fig. 4-4 XRD patterns for 304L SS (a) as-received and (b) after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃………………………………………………….……....…40 圖4-5 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之蝕孔橫截面形貌。 Fig. 4-5 Cross-section optical micrograph of 304L SS after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃with Murakami’s regent………………………….......…41 圖4-6 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,未發生蝕孔區域之橫截面形貌及化學組成分析。 Fig. 4-6 Cross-section SEM micrograph and X-ray maps at the pit-free interface, showing carbon and oxide layers on top of 304L SS substrate after a 500-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃………………….…...…46 圖4-7 (a) 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,蝕孔下方區域之橫截面形貌,(b)高倍率之形貌觀察及產物鑑定。 Fig. 4-7 (a) SEM micrograph of the cross-section of the coke/substrate interface of a pit formed in 304L SS after a 500-hr exposure in 35 %CO+60 %H2+5 %H2O mixed gas at 600 ℃and (b) identific -ation of the reaction products at a high magnification….47 圖4-8 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,基材中碳化物之形貌觀察及EDS成分分析。 Fig. 4-8 SEM micrograph and EDS line scan showing the formation of carbide in the matrix of 304L SS after a 500-hr exposure in flowing 35 % CO+60 % H2+5 % H2O mixed gas at 600 ℃….48 圖4-9 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,碳化物析出於晶界上之形貌觀察。 Fig. 4-9 Grain boundary carbide precipitation in 304L SS after a 500-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃………………………..……………………….…….49 圖4-10 304L不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,雙晶晶界上之碳化物形貌觀察及EDS成分分析。 Fig. 4-10 Grain boundary carbide precipitation in 304L SS after a 500-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃………………..…………………………….….50 圖4-11 (a) 347不銹鋼於600℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之形貌,(b) 移除表面積碳。 Fig. 4-11 Micrographs showing surface appearance of 347 specimen after a 500-hr exposure test in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃; (a) 347 SS with coke deposits remaining on the surface and (b) 347 SS with surface coke blown-away……..51 圖4-12 (a) 347不銹鋼原材及(b) 347不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之表面X光繞射分析圖。 Fig. 4-12 XRD patterns for 347 SS (a) as-received and (b) after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃……………………….….…….….……….….….….…52 圖4-13 347不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之蝕孔橫截面形貌。 Fig. 4-13 Cross-section optical micrograph of 347 SS after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃with Murakami’s regent……………….….……...….….…55 圖4-14 347不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,蝕孔下方區域之橫截面形貌。 Fig. 4-14 SEM micrograph of the cross-section of the coke/substrate interface of a pit formed in 347 SS after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃…...….56 圖4-15 (a) 347不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,蝕孔下方區域之SEM橫截面形貌及產物鑑定,(b)積碳層與基材界面處之凹洞形貌觀察。 Fig. 4-15 (a) SEM micrograph of the cross-section and identification of the reaction products at a high magnification of the coke/substrate interface of a pit formed in 347 SS after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃and (b) image of cavities…..…………....….…...…57 圖4-16 (a) 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後並移除表面積碳之形貌,(b) 1000小時,(c) 1000小時試驗後之試片角隅SEM影像。 Fig. 4-16 (a) Optical micrographs showing surface appearance of a 321 SS specimen after a 500-hr exposure test in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃with coke deposits blown- away, (b) 1000 h, and (c) side view of SEM image…...……..65 圖4-17 (a) 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後並移除表面積碳後之SEM形貌觀察,(b) 1000小時。 Fig. 4-17 SEM micrographs showing the pit morphologies of a 321 SS specimen after the exposures in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃ for (a) 500 hours and (b) 1000 hours, with coke deposits blown-away………..……..…….……..…66 圖4-18 (a) 321不銹鋼原材,(b) 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後之表面X光繞射分析圖及(c) 1000小時之XRD分析結果。 Fig. 4-18 XRD patterns for 347 SS (a) as-received, (b) after the exposures in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃ for 500 hours, and (c) 1000 hours…………….…………….….…..…67 圖4-19 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時後,試片邊緣裂縫生成位置之SEM影像;(a) 橫截面形貌及(b)表面形貌。 Fig.4-19 SEM micrographs showing a crack formed at edge of a 321 SS specimen after a 500-hr exposure test in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃; (a) cross-section image and (b) surface image……..……….…………..………..…………..…68 圖4-20 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時後;(a) 試片邊緣碳沈積之高倍率SEM影像,(b) 點A之EDS成分分析結果。 Fig. 4-20 (a) High magnification image of the edge of a 321SS specimen with carbon products and (b) EDS analysis of carbon products (spot A) after a 500-hr exposure test in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃…………………………...…..…69 圖4-21 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時後;(a) 塵化蝕孔內部形貌之SEM影像,(b) 試片表面所沈積的碳纖維之TEM影像觀察,(c) 碳纖維上金屬顆粒(點A)之EDS成分分析結果,(d) 金屬顆粒之選區繞射結果。 Fig. 4-21 (a) SEM micrograph showing the morphology of a pit formed on 321 SS surface after the exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃ for 1000 hours, (b) TEM image showing the carbon filament with a metallic particle (spot A) at its tip that collected from the coke deposits of a 321 SS specimen, (c) EDS results showing the chemical composition, and (d) selective area diffraction pattern of metallic particle with (1,0,0) zone axis….………….….………......………..…71 圖4-22 321不銹鋼於600℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行曝露試驗後,蝕孔下方區域之橫截面形貌;(a) 500小時,(b) 1000小時。 Fig. 4-22 Cross-section SEM micrographs of 321 SS after the exposures in 35 % CO + 60 % H2 + 5 % H2O mixed gases at 600 oC for (a) 500 hours and (b) 1000 hours.….….………...…...………..…75 圖4-23 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行曝露試驗後,蝕孔下方區域之SEM橫截面形貌及產物鑑定;(a) 500小時,(b) 1000小時。 Fig.4-23 Cross-section SEM micrographs of the coke/substrate interface and identification of the reaction products of a pit formed in 321 SS after the exposures in flowing 35 %CO +60 %H2 +5 % H2O mixed gas at 600 ℃; (a) 500 hours and (b) 1000 hours...……76 圖4-24 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時曝露試驗後,基材中碳化物之形貌觀察及EDS成分分析。 Fig.4-24 SEM micrograph and EDS line scan showing the formation of carbide in the matrix of 321 SS after a 1000-hr exposure in flowing 35 % CO+60 % H2+5 % H2O mixed gas at 600 ℃..77 圖4-25 (a) 321不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時曝露試驗後,蝕孔底部基材中均勻析出區中碳化鉻之TEM明視野影像,(b) 選區繞射圖譜(極軸:(01 )、(211)及(611))。 Fig.4-25 (a) TEM bright field image of chromium carbide at matrix precipitation zone in the matrix of 321 SS after a 1000-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃and (b) the selective area diffraction pattern of dark phase (fitted with zone axes of Cr7C3 (01 ), (211) and (611))……………………………………………………..…80 圖4-26 (a) 321不銹鋼於600℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時曝露試驗後,蝕孔底部基材中沿晶析出區中碳化鉻之TEM明視野影像,(b) 選區繞射圖譜(極軸:( 00)、(12 )及(211))。 Fig.4-26 (a) TEM bright field image of chromium carbide at grain boundary precipitation zone in the matrix of 321 SS after a 1000-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 oC and (b) the selective area diffraction pattern of dark phase (fitted with zone axes of Cr23C6 ( 00), (12 ) and (211)).…………………………………………..…81 圖4-27 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行曝露試驗後之表面巨觀形貌,(a) 250小時,(b) 500小時及(c) 1000小時。 Fig. 4-27 Optical micrographs showing surface appearance of a 310 SS specimen after the exposures in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃ for (a) 250 hours, (b) 500 hours and (c) 1000 hours…………..………………………………....…86 圖4-28 (a) 310不銹鋼原材,(b) 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行250小時曝露試驗後之表面X光繞射分析圖,(c) 500小時及(d) 1000小時之XRD分析結果。 Fig. 4-28 XRD patterns for 310 SS (a) as-received, (b) after the exposures in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600℃ for 250 hours, (c) 500 hours, and (d) 1000 hours……………….……87 圖4-29 (a) 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行250小時曝露試驗後之表面形貌,(b) 橫截面影像。 Fig. 4-29 (a) SEM micrograph showing the surface of 310 SS after e a 250-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600℃and (b) cross-section image..……………...……….88 圖4-30 (a) 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,試片表面蝕孔覆蓋積碳之形貌,(b) 移除積碳後的蝕孔形貌。 Fig. 4-30 (a) SEM micrograph showing pit with coke deposits formed on the 310 SS surface after a 500-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃and (b) morphology of pit with removing coke deposits…………………….…………...89 圖4-31 (a) 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時曝露試驗後,試片表面蝕孔覆蓋積碳之形貌,(b)高倍率之積碳形貌。 Fig. 4-31 (a) Micrograph of pit with coke deposits formed on the 310 SS surface after a 1000-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃and (b) high magnification image of coke deposit…………………………………….………..…...90 圖4-32 (a) 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時曝露試驗後,試片表面蝕之形貌,(b) 高倍率之兩個鄰近蝕孔互相連結處的形貌。 Fig. 4-32 (a) Morphology of pit formed on the 310 SS surface after a 1000-hr exposure in 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃and (b) high magnification image of the wall between two neighbor pits………………………......……....98 圖4-33 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行曝露試驗後之蝕孔橫截面形貌;(a) 500小時及(b) 1000小時。 Fig. 4-33 Cross-section SEM micrographs of 310 SS after the exposures in 35 % CO + 60 % H2 + 5 % H2O mixed gases at 600 ℃ for (a) 500 hours and (b) 1000 hours……………...………………....99 圖4-34 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行500小時曝露試驗後,蝕孔下方基材區域之SEM橫截面形貌及反應產物之相鑑定。 Fig. 4-34 SEM micrograph of the cross-section of the coke/substrate interface and identification of the reaction products of a pit formed in 310 SS after a 500-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃…………...…..100 圖4-35 310不銹鋼於600 ℃之35 % CO + 60 % H2 + 5 % H2O混合氣氛中進行1000小時曝露試驗後,蝕孔下方基材中包含裂縫區域之SEM橫截面形貌。 Fig. 4-35 SEM micrograph of the cross-section of the coke/substrate interface of a pit formed in 310 SS with a crack present after a 1000-hr exposure in flowing 35 % CO + 60 % H2 + 5 % H2O mixed gas at 600 ℃………………..……………………...101 圖4-36 310不銹鋼蝕孔形貌的演進示意圖,(a)小尺寸蝕孔相互連接而形成大蝕孔,(b)裂縫導致二次蝕孔的形成。 Fig. 4-36 Schematic diagrams of the development of pit on 310 SS, (a) coalescence of pits and (b) nucleation of secondary pit induced by the formation of crack ....................................................102

    1. J. C. Nava Paz and H. J. Grabke, “Metal dusting”, Oxidation of Metals, pp. 437~456, 1993.
    2. W. B. Hoyt and R. H. Caughey, “High Temperature Metal Deterioration in Atmospheres Containing Carbon-Monoxide and Hydrogen”, Corrosion, Vol. 15, pp. 627t~630t, 1959.
    3. P. A. Lefrancois and W. B. Hoyt, “Chemical thermodynamics of high temperature reactions in metal dusting corrosion”, Corrosion, Vol. 19, pp. 360t~368t, 1963.
    4. R. F. Hochman, “Basic Studies of Metal Deterioration in Carbonaceous Atmospheres at Elevated Temperatures”, Proc. 4th Int. Congress Metal Corrosion, ed. N. E. Hamner (Houston, Texas: NACE, 1972), pp. 258~263, 1972.
    5. R. F. Hochman, “Catastrophic Deterioration of High-Temperature Alloys in Carbonaceous Atmospheres”, in Proc. Symp. High-Temperature Alloys with Emphasis on Environmental Effects, eds. Z. A. Foroulis, F. S. Pettit (Pennington, NJ: The electrochemical Society, 1977), pp. 715~732, 1977.
    6. H. J. Grabke, R. Krajak, E. M. Müller -Lorenz, and S. Strauss, “Metal dusting of nickel-base alloys”, Materials and Corrosion, Vol. 47, pp. 495~504, 1996.
    7. M. L. Holland and H. J. de Bruyn, “Metal dusting failure in methane reforming plant”, The International Journal of Pressure Vessels and Piping, Vol. 66, pp. 125~133, 1996.
    8. K. L. Baumert and J. J. Hoffman, “Materials experience in methanol reforming units”, Materials Performance Vol. 3, pp. 60~64, 1998.
    9. H. J. Grabke, “Metal dusting of low-and high-alloy steels”, Corrosion, Vol. 51, No. 9, pp. 711~720, 1995.
    10. F. Dettenwanger, D. Grotmann, H. Friedrich, E. Berghf-Hasselbächer, M. Schorr, and M. Schütze, “Damage of a heat-treatment retort by metal dusting attack”, Materials and Corrosion, Vol. 50, pp. 289~293, 1999.
    11. T. Shibasaki, K. Takemura, T. Mohri and H. Hashimoto, “Experience with metal dusting in H2/CO/CO2/H2O atmosphere”, Ammonia Technical manual (Ammonia plant safety and related facilities), Vol. 36, pp. 165~179, 1996.
    12. H. J. Grabke, R. Krajak and J. C. Nava Paz, “On the mechanism of catastrophic carburization Metal Dusting”, Corrosion Science, Vol. 35, pp. 1141~1150, 1993.
    13. G. M. Tanner, “Metal dusting (Catastrophic carburization) of a waste heat boiler tube”, Engineering Failure Analysis, Vol. 1, pp.289~306, 1994.
    14. R. J. Gommans and T. L. Huurdeman, “Experience with metal dusting in waste heate boiler”, Ammonia Technical manual (Ammonia plant safety and related facilities), Vol. 35, pp. 145~162, 1995.
    15. H. Stahl and S. G. Thomsen, “Survey of worldwide experience with metal dusting”, Ammonia Technical manual (Ammonia plant safety and related facilities), Vol. 36, pp. 180~191, 1996.
    16. T. Lant and A. B. Tomkings, “Operating Experience Of Metal Dusting Failures”, CORROSION 2001, Paper No.1378, NACE, Houston, Texas, USA, 2001.
    17. H. J. Grabke, R. Krajak, and E. M. Müller Lorenz, “Metal dusting of high temperature alloys”, Materials and Corrosion, Vol. 44, pp. 89~97, 1993.
    18. H. J. Grabke, H. P. Martinz and E. M. Müller-Lorenz, “Metal dusting resistance of high chromium alloys”, Materials and Corrosion Vol. 54, pp. 860~863, 2003.
    19. D. L. Klarstrom, H. J. Grabke, and L. D. Pual, “The metal dusting behavior of several high temperature nickel based alloys”, CORROSION 2001, Paper No. 1397, 2001, NACE, Houston, Texas, USA, 2001.
    20. E. Q. Camp, C. Phillips, and L. Gross, “Corrosion of 18-8 alloy furnace tubes in high-temperature vapor phase cracking service”, Corrosion, Vol. 1, pp. 149~160, 1945.
    21. H. J. Grabke, C. B. Bracho-Troconis, and E. M. Müller Lorenz, “Metal dusting of low alloy steels”, Materials and Corrosion, Vol. 45, pp. 215~221, 1994.
    22. H. J. Grabke, “Thermodynamics, mechanism and kinetics of metal dusting”, Materials and corrosion, Vol. 49, pp. 303~308, 1998.
    23. E. Pippel, J. Woltersodorf, H. J. Grabke, and S. Strauss, “Microprocesses of metal dusting on iron”, Steel research Vol. 66, pp. 217~221, 1995.
    24. C. M. Chun and T. A. Ramanarayanan, “Metal dusting corrosion of low-chromium steels”, Oxidation of Metals, Vol. 62, pp. 71~92, 2004.
    25. C. M. Chun, J. D. Mnmford, and T. A. Ramanarayanan, “Metal dusting corrosion of cobalt”, Journal of The Electrochemical Society, Vol. 150, pp. B76~B82, 2003.
    26. C. M. Chun, J. D. Mnmford, and T. A. Ramanarayanan, “Carbon-induced corrosion of nickel anode”, Journal of The Electrochemical Society, Vol. 147, pp. 3680~3686, 2000.
    27. Richard T. Jones and Kenneth L. Baumert, “Metal dusting-an overview of current literature”, CORROSION 2001, Paper No.1372, NACE, Houston, Texas, USA, 2001.
    28. H. J. Grabke, E. M. Müller-Lorenz, S. Strauss, E. Pippel, and J. Woltersdorf, “Effects of grain size, cold working, and surface finish on the metal-dusting resistance of steels”, Oxidation of Metals, Vol.50, pp. 241~254, 1998.
    29. A. Schneider, H. Viefhaus, G. Inden, H. J. Grabke, and E.M. Müller-Lorenz, “Influence of H2S on metal dusting”, Materials and Corrosion, Vol.49, pp. 336~339, 1998.
    30. A. S. Fabiszewski, W. R. Watkins, J. J. Hoffman, and S. W. Dean, “The effect of temperature and gas composition on the dusting susceptibility of various alloys”, CORROSION 2000, Paper No. 532, Orlando, Florida, USA 2000.
    31. H. J. Grabke and E. M. Müller-Lorenz, “Protection of high alloy steels against metal dusting by oxide scales”, Materials and Corrosion, Vol.49, pp. 317~320, 1998.
    32. E. M. Müller-Lorenz, S. Strauss, and H. J. Grabke, “Effects of surface state, microstructure and alloying additions on metal dusting resistance of high alloys steel”, EURROCORR 98, Paper No.24, Jaarbeurs Congress Center Utrecht, The Netherlands, 1998.
    33. H. J. Grabke, “Mechanisms and prevention of corrosion in carbonaceous gases”, Material Science Forum, Vol. 369-372, pp. 101~108, 2001.
    34. S. Strauss and H. J. Grabke, “Role of alloying elements in steels on metal dusting”, Materials and Corrosion, Vol.49, pp. 321~327, 1998.
    35. A. Schneider and J. Zhang, “Metal dusting of ferritic Fe-Al-M-C (M = Ti, V, Nb, Ta) alloys in CO-H2-H2O gas mixtures at 650℃”, Materials and Corrosion, Vol. 54, pp. 778~784, 2003.
    36. K. T. Voisey, Z. Liu, H. Zougdani, and F. H. Stott, “The use of plasma sprayed laser re-melted corrosion resistant metallic coatings to inhibit metal dusting”, Material Science Forum, Vol. 461-464, pp. 553~560, 2004.
    37. F. Di Gabriele, F.H. Stott, and Z. Liu, “Metal dusting performance of nickel-base alloys”, Material Science Forum, Vol. 461-464, pp. 545~552, 2004.
    38. Z. Zeng and K. Natesan, “Control of metal dusting corrosion in Ni-based alloys”, International Journal of Hydrogen Energy, Vol. 32, pp. 3640~3647, 2007.
    39. Z. Zeng and K. Natesan, “Initiation of metal-dusting pits and a method to mitigate metal-dusting corrosion”, Oxidation of Metals, Vol. 66, pp. 1~20, 2006.
    40. Y. Nishiyama, N. Otsuka, and T. Kudo, “Metal dusting behaviour of Cr–Ni steels and Ni-base alloys in a simulated syngas mixture”, Corrosion Science, Vol. 48, pp 2064~2083, 2006.
    41. Z. Zeng, K. Natesan, and M. Grimsditch, “Effect of oxide scale compositions on metal dusting corrosion of Fe-based alloys”, Corrosion, Vol. 60, pp. 632~642, 2004.
    42. H. J. Grabke, “Mechanisms of metal dusting of law and high alloy steels”, Solid state phenomean, Vol. 41, pp. 3~16, 1995.
    43. H. J. de Bruyn, E. H. Edwin, and S. Brendryen, “Apparent influence of steam on metal dusting”, CORROSION 2001, Paper No. 1383, Houston, Texas, USA, 2001.
    44. P. J. Nolant, P. Banks, and S. K. Lister, “The carburization of Fe-Cr alloys and steels in CO/CO2 environments”, Proc. , Conf. on behavior of temperature alloys in aggressive environments, Petten, The Netherlands, pp. 705~718, 1980.
    45. B. A. Baker and G. D. Smith, “Metal dusting behavior of high temperature alloys”, CORROSION 1999, Paper No. 54, San Antonio, Texas, USA, 1999.
    46. H. J. Grabke, “Metal dusting”, Materials and corrosion, Vol. 54, pp. 736~746, 2003.
    47. G. W. Han, D. Feng, and B. Deng, “Metal dusting and coking of alloy 803”, Corrosion science, Vol. 46, pp. 443~452, 2004.
    48. D. Monceau, E. M. Muller-Lorenz, H. J. Grabke, “Metal dusting of stainless steels”, Materials science forum, Vol. 251~254, pp. 665~670, 1997.
    49. D. A. Jones, Principle and Prevention of Corrosion, Macmillan Publishing Company, New York, USA, 1992.
    50. D. R. Gaskell, Introduction to Metallurgical Themodynamics, 2nd ed., Mcgraw-Hill, New York, USA, 1983.
    51. N. Birks and G. H. Meier, Introduction to High Temperature Oxidation of Metals, Eward Amold, Pittsburgh, USA, 1982.
    52. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London and New York, 1988.
    53. G. M. Smith, D. J. Young, and D. L. Trimm, “Carburization Kinetics of Heat-Resistant Steels”, Oxidation of Metals, Vol. 18, pp. 229~243, 1982.
    54. T. A. Ramanarayanan and D. J. Srolovitz, “Carburization Mechanisms of High Chromium Alloys”, Journal of The Electrochemical Society, Vol. 132, pp. 2268~2274, 1985.
    55. H. J. Grabke and I. Wolf, “Carburization and Oxidation”, Materials Science and Engineering, Vol.87 pp. 23~33 1987.
    56. T. A. Ramanarayanan, R. A. Petkovic, J. D. Mumford, and A. Ozekccin, “Carburization of High Chromium Alloys”, Materials and Corrosion, Vol. 49, pp. 226~230, 1985.
    57. S. Forseth and P. Kofstad, “Metal Dusting phenomenon during carburization of FeNiCr-alloys at 850~1000℃”, Materials and Corrosion, Vol.46, pp. 201~206 1995.
    58. C. Y. Lin and W. T. Tsai, “Nano-size carbon filament formation during metal dusting of stainless steel”, Materials Chemistry and Physics, Vol. 82, pp. 929~936, 2003.
    59. C. Y. Lin, C. H. Chang, and W. T. Tsai, “Morphological and microstructure aspects of metal dusting on 304L stainless steel with different surface treatments”, Oxidation of Metals, Vol. 62, , pp. 153~174, 2004.
    60. C. M. Chun and T. A. Ramanarayanan, “Metal Dusting Corrosion of Austenitic 304 Stainless Steel”, Journal of The Electrochemical Society, Vol. 152, pp. B169~B177, 2005.
    61. H. E. Evans, D. A. Hilton, and R. A. Holm, “Chromium-depleted zones and oxidation process in stainless-steels.” Oxidation of Metals, 10, pp. 149~161, 1976.
    62. R. C. Lobb and H. E. Evans, “Observations on the effect of low sulfur activity on the oxidation of chromium-depleted zones in a stainless-steel.”, Oxidation of Metals, 16, pp. 371~384, 1981.
    63. H. Asteman, J. E. Svensson, and L. G. Johansson, “Oxidation of 310 steel in H2O/O2 mixtures at 600 degrees C -- the effect of water-vapour-enhanced chromium evaporation.” Corrosion Science, 44, pp. 2635~2649, 2002.
    64. J. D. Kuenzly and D. L. Douglass, “The oxidation mechanism of Ni3Al containing Yttrium”, Oxidation Metal, Vol. 8, pp. 139~178, 1974.
    65. Z. Suo, D. V. Kubair, A. G. Evans, D. R. Clarke, and V. K. Tolpygo, “Stresses induced in alloys by selective oxidation.” Acta Materialia , Vol. 51, pp. 959~974, 2003.
    66. R. C. Yin, “Carburization of 310 stainless steel exposed at 800~1000℃ in 2%CH4-H2 gas mixture”, Corrosion Science, Vol.47, pp. 1896~1910, 2005.
    67. Y. Nishiyman, N. Otsuka, and T. Nishizawa, “Carburization resistance of austenitic alloys in CH4-CO2-H2 gas mixtures at elevated temperatures”, Corrosion, Vol.59, pp. 688~700, 2003.
    68. P. Szakálos, R. Pettersson, and S. Hertzman, “An active corrosion mechanism for metal dusting on 304L stainless steel”, Corrosion Science, Vol. 44, pp. 2253~2270, 2002.
    69. M. Hänsel, C. A. Boddington, and D. J. Young, “Internal oxidation and carburization of heat-resistant alloys”, Corrosion Science, Vol.45, pp. 967~981, 2003.
    70. P. Szakálos, “Mechanisms and driving forces of metal dusting”, Materials and Corrosion, Vol. 54, pp. 752~762, 2003.
    71. J. Q. Zhang and David J. Young, “Kinetic and mechanisms of nickel metal dusting I. Kinetics and morphology”, Corrosion Science, Vol. 49, pp. 1496~1512, 2007.
    72. B. Schmid, O. Grong, and R. Odegärd, “Coke formation in metal dusting experiments”, Materials and Corrosion, Vol.50, pp. 647~653 1999.
    73. B. Schmid, N. Aas, Ø. Grong, and R. Ø degård, “In situ environmental scanning electron microscope observations of catalytic processes encountered in metal dusting corrosion on iron and nickel”, Applied Catalysis A-General, Vol. 215 pp. 257~270, 2001.
    74. J. Q. Zhang, K. Boddington, and D. J. Young, “Oxidation, carburization and metal dusting of 304 stainless steel in CO/CO2 and CO/H2/H2O gas mixtures”, Corrosion Science, Vol. 50, pp. 3107~3115, 2008.
    75. D. J. Young, “High temperature corrosion in reducing gas”, The 10th asia pacific corrosion control conference, Paper No. K1, Oct. Bali, Indonesia, pp. 27~31, 1997.
    76. D. Renusch, G. Muraludharan, S. Uran, M. Grimsditch, B. W. Veal, J. K. Wright, and R. L. Willamson, “Effect of edges and corners on stresses in thermally grown alumina Scales”, Oxidation of Metals, Vol. 53, pp. 171~191, 2000.
    77. N. Otsuka, Y. Nishiyama, and T. Kudo, “Breakaway oxidation of TP310S stainless-steel foil initiated by Cr depletion of the entire specimen in a simulated flue-gas atmosphere”, Oxidation of Metals, Vol. 62, pp. 121~139, 2004.
    78. R. Schneider, E. Pippel, J. Woltersdorf, S. Strauss, and H.J. Grabke, “Microprocesses of metal dusting on nickel and Ni-base alloys”, Steel Research, Vol.68, pp. 326~332, 1997.
    79. C. Y. Lin, C. H. Chang, and W. T. Tsai, “Metal dusting of pre-carburised 304L stainless steel”, Corrosion Engineering Science and Technology, Vol. 44, pp. 266~274, 2009.
    80. K. Ishiguro and T. Homma, “Thin oxide films on a ferritic and an austenitic alloy”, CORROSION 1987, NACE International, Houston, Texas, pp. 28~34, 1981.
    81. K. Ledjeff, A. Rahmel, and M. Schorr, “Oxidation and Carburization of High Alloys Materials for Cracking Tubes part 1: The oxidation Behaviour in Air”, Oxidation of Metals, Vol. 30, pp. 767~784, 1979.
    82. A. C. S. Sabioni, A. M. Huntz, L. C. Borges, and F. Jomard, “First study of manganse diffusion in Cr2O3 polycrystals and thin film by SIMS”, Philosophical Magazine, Vol. 87, pp. 1921~1937, 2007.
    83. A. C. S. Sabioni, A. M. Huntz, F. Silva, and F. Jomard, “Diffusion of iron in Cr2O3 : polycrystals and thin films”, Materials Science and Engineering A, Vol. 392, pp. 254~261, 2005.
    84. T. Smith, “Low alloy steels to resist oxidation”, Steel Times, Vol. 210, pp. 339~341, 1982.
    85. R. Peraldi and B. A. Pint, “Effect of Cr and Ni contents on the Oxidation Behavior of Ferritic and Austensitic Model Alloys in Air with Water Vapor”, Oxidation of Metals, Vol. 61, pp. 463~482, 2004.

    下載圖示 校內:2013-07-29公開
    校外:2013-07-29公開
    QR CODE